Выбрать главу

Сначала получается треугольник, который увеличивается в размерах, затем уменьшается, пока не исчезнет на противоположной вершине. Но какую фигуру мы увидим в середине этого процесса? Как ни странно, это правильный шестиугольник, то есть шестиугольник с равными сторонами и углами.

Это происходит потому, что треугольные сечения изменяются при прохождении через другие три вершины куба, образуя шестиугольник со сторонами разной длины, который потом снова становится треугольником, уменьшающимся в размере.

Но вершины этого треугольника теперь ориентированы в направлении, противоположном направлению изначального треугольника, поэтому в силу симметрии в средней точке мы получаем правильный шестиугольник.

Плоские сечения куба в зависимости от направления среза.

* * *

ГОРИЗОНТАЛИ

Плоские сечения трехмерных объектов с целью получения информации об их геометрии и форме используются, например, в топографии. На топографических картах можно видеть различные контуры, которые представляют собой точки, находящиеся на одной высоте над уровнем моря. Они показывают горизонтальные сечения поверхности местности на различной высоте. При пересечении поверхности горизонтальными плоскостями как раз и получаются такие кривые линии. Если они расположены очень близко друг к другу, то на местности это означает наличие крутого склона, а если они находятся далеко друг от друга, то поверхность более пологая. Горизонтали наряду с использованием цвета на топографических картах дают дополнительную информацию о рельефе.

Горизонтали служат для изображения рельефа местности.

* * *

Чтобы получить трехмерные сечения гиперкуба, мы, как и в случае с кубом, будем делать срезы вдоль кубической грани, затем параллельно квадратной грани, затем параллельно ребру и, наконец, начиная с вершины. Можно представить, будто гиперкуб падает сквозь наше трехмерное пространство. Мы будем изучать те части гиперкуба, которые мы видим во время его движения.

Если принять во внимание, что гиперкуб, или тессеракт, представляет собой куб, движущийся в дополнительном перпендикулярном направлении, то очевидно, что его трехмерные сечения вдоль кубической грани всегда являются кубами. И действительно, эти сечения — различные положения трехмерного куба при его движении в четвертом измерении.

Чтобы понять, как выглядят сечения гиперкуба при срезах параллельно квадратной грани, надо представить сечения куба вдоль его граней или ребер. Как видно на рисунке ниже, квадратная грань образует квадратные сечения при движении, в то время как кусочки рассекаемой квадратной грани образуют прямоугольники, поэтому сечения гиперкуба будут представлять собой прямоугольные призмы с квадратными основаниями.

Сечения куба со стороны ребра и вершины помогают понять форму трехмерного сечения гиперкуба при срезах параллельно ребру. Последовательность трехмерных срезов будет линией, треугольной призмой, затем шестиугольной призмой и правильной шестиугольной призмой. Затем эти фигуры будут повторяться в обратном порядке.

Наиболее интересный случай, как и в примере с кубом, — это сечения гиперкуба, начиная с его вершины. Последовательность сечений представляет собой точку, тетраэдр, усеченный тетраэдр, икосаэдр, снова усеченный тетраэдр, тетраэдр и опять точку.

Развертка гиперкуба

Другим методом визуализации гиперкуба является изучение его развертки в трехмерном пространстве. В нашем трехмерном пространстве обычная коробка образована внешней частью куба — его квадратными гранями. Если открыть одну из них, как крышку, мы получим внутреннюю часть куба — пространство для хранения вещей. Во Флатландии, например, коробки представляли собой квадраты, а гранями таких коробок были стороны квадрата, одна из которых являлась крышкой, с помощью которой флатландцы открывали и закрывали коробку, используя внутреннее двумерное пространство для хранения вещей. Гиперкоробкой будет являться внешняя часть гиперкуба, образованная трехмерными кубическими гранями, одна из которых будет использоваться как крышка, и гиперсущества смогут хранить в четырехмерном внутреннем пространстве гиперкоробки свои вещи.

Если развернуть квадрат, или куб, или гиперкуб, мы получим их внешнюю часть: для квадрата — отрезки, для куба — квадраты, для гиперкуба — кубы, то есть фигуры на одну размерность меньше. Следовательно, мы можем развернуть их в пространстве меньшей размерности. Коробка из Флатландии — квадрат — может быть развернута в Лайнландии, и ее сможет увидеть король Лайнландии, чтобы понять, что такое квадрат. Наша обычная кубическая коробка может быть развернута на плоскости. Таким образом флатландцы могут попытаться понять форму куба. И, наконец, мы можем развернуть гиперкоробку в нашем трехмерном пространстве и лучше понять, что такое гиперкуб. На следующих рисунках изображены развертки в каждом описанном случае.

Давайте представим, как Квадрат — житель Флатландии — развернул одну из своих коробок в Лайнландии. Для этого он сначала открыл крышку коробки (если у нее не было крышки, то две из ее сторон нужно отделить друг от друга в вершине), а затем развернул ее в прямую линию. В конечном итоге он получил четыре равных отрезка, расположенных на одной линии, то есть в Лайнландии.

Теперь рассмотрим хорошо нам знакомую развертку кубической коробки. Как обычно, сначала мы откроем крышку. Если крышки нет, то одну из граней надо отделить от других, разрезав по трем ребрам. Когда крышка открыта, отделим друг от друга четыре боковых грани, разрезав коробку по четырем соединяющим их ребрам. После этого кубическая коробка может быть разложена на столе, образовав так называемую развертку куба, как показано на рисунке, хотя возможны и другие развертки.

* * *

ГЕКСАМИНО

Плоские фигуры, образованные путем соединения шести квадратов ребро к ребру (квадраты не могут касаться только вершинами), называются гексамино. Примером такой фигуры является развертка кубической коробки. Рассмотрим интересную задачу: сколько существует различных таких фигур? Их количество, конечно, зависит от числа квадратов. В общем случае полимино, или n-мино, образовано из n квадратов. Существует одно-единственное домино (n — 2). Добавив один квадрат, мы можем построить два тримино (— 3). С еще одним квадратом мы получим пять тетрамино. Именно эти фигуры, кстати, используются в игрететрис. Существует 12 пентамино, которые также появляются в интересных играх. Наконец, добавив еще один квадрат к 12 пентамино, мы получим 35 гексамино. Но какие из них являются развертками куба? Попробуйте сами ответить на этот вопрос!

35 возможных гексамино, но лишь 11 из них являются развертками куба.

* * *

Теперь, используя аналогии для случаев меньших размерностей, мы попробуем получить развертку гиперкуба. Как и раньше, мы откроем крышку гиперкоробки — верхнюю кубическую грань, соединенную с шестью другими гранями. Для этого мы должны отсоединить кубическую крышку от пяти граней гиперкуба, разрезав по пяти квадратам. Теперь гиперкуб открыт, но мы должны сделать дополнительные разрезы, чтобы развернуть его. Нужно разрезать по квадратам, которые соединяют те шесть кубов, что прилегали к крышке (таких разрезов будет восемь). Таким образом мы получили гиперкуб, развернутый в нашем трехмерном пространстве.