Аналогично, если мы измерим рост и вес членов некой семьи, эти измерения также будут точками в двумерном пространстве, заданными парой измеренных значений. Однако на дверном косяке нельзя будет изобразить эти точки, нам потребуется для этого вся стена. Вот почему ни одна семья не отмечает эти данные таким образом! Стена была бы представлением координатной плоскости. Мы бы отмечали рост по вертикали, а вес — по горизонтали. Тогда пара чисел для каждого члена семьи изображалась бы точкой на стене.
Стена кухни представляет собой координатную плоскость, дверной косяк является осью роста, а плинтус — осью веса. Четыре точки соответствуют четырем парам чисел — росту и весу каждого члена семьи.
* * *
МУХА ДЕКАРТА
Французский математик Рене Декарт (1596–1650) ввел понятие координатной плоскости, а также аналитической геометрии в своей работе «Геометрия», опубликованной в качестве приложения к книге «Рассуждение о методе». По одной из легенд, идея декартовой плоскости пришла к нему в голову, когда он думал о движении мухи по потолку спальни. Декарт понял, что положение мухи может быть задано расстояниями от двух стен. Таким образом, Декарт добавил координаты — алгебраический инструмент — к плоскости Евклида, которая, в свою очередь, находится в некотором геометрическом пространстве. Хотя в наше время координаты могут показаться простым понятием, в то время это было очень трудно воспринять даже Исааку Ньютону (1643–1727), который испытывал сложности при чтении работ Декарта.
Координатная плоскость с точками А = (4, 2), В = (-5, 3), С = (-2, -4) и D = (5, -3).
* * *
Трехмерное координатное пространство задается тройками чисел (х1, х2, х3). Как уже говорилось, положение вертолета определяется тремя числами — широтой, долготой и высотой. Аналогично более абстрактным примером будет пространство, содержащее картонные коробки, определенные их длиной, шириной и высотой.
Коробка, изображенная в трехмерном координатном пространстве. Координаты точки (а, Ь, с) определяют размеры коробки длиной а, шириной b и высотой с.
В общем случае координаты точки в n-мерном пространстве задаются кортежем (набором) из n чисел (х1…,xn), где n — размерность пространства. Таким образом, каждая точка пространства является кортежем (х1…,xn), а n-мерное координатное пространство состоит из всевозможных кортежей. В математических символах это записывается так:
Во многих отраслях науки и техники различные данные представляют собой наборы числовых значений, поэтому, применяя понятие координатного пространства к этим кортежам чисел, мы можем использовать геометрические инструменты для организации, локализации и обработки информации. Таким образом мы получаем возможность делать полезные заключения. Можно привести разнообразные примеры, такие как результаты медицинских анализов крови (количество в крови натрия, калия, глюкозы, холестерина и других соединений). Эти результаты представляют собой кортеж из n чисел, где n обозначает количество проведенных клинических испытаний. Другими примерами могут выступать списки групп студентов, результаты спортивных соревнований и так далее.
* * *
ОБЫЧНОЕ РАССТОЯНИЕ
Понятие координатного пространства предполагает существование фиксированного расстояния между двумя точками в этом пространстве, так называемого обычного расстояния. Например, для двух точек р = (x1, х2, х3) и q = (y1, у2, у3) в трехмерном координатном пространстве R3 обычное расстояние задается выражением
что делает наш мир трехмерным евклидовым пространством. Именно это расстояние мы используем в нашей повседневной жизни. Конечно, это понятие расстояния легко обобщается на n-мерное координатное пространство.
Расстояние (С) между двумя точками (x1, y1) и (х2, у2) на плоскости определяется по теореме Пифагора, так как С является гипотенузой прямоугольного треугольника со сторонами А = у2 — у1 и В = х2 — х1
Несмотря на кажущуюся простоту этих идей, потребовалось много времени, чтобы привыкнуть к ним и начать применять их на практике. Математики, другие ученые и философы вели жаркие споры о смысле и реальности пространств более высокой размерности. Например, в «Началах» Евклида определяется, что точка не имеет размерности, прямая линия имеет одну размерность (длину), плоскость — два измерения (длину и ширину), а тело в пространстве — три измерения (длину, ширину и высоту). Но Аристотель в своей работе «О небе» утверждал, что четырехмерного пространства не существует: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и кроме них нет никакой другой величины, так как три измерения суть все измерения, и величина, которая делима в трех измерениях, делима во всех измерениях».
Клавдий Птолемей (ок. 100–170 н. э.) в своей работе «О расстоянии» впервые доказал, что четвертого измерения не существует. К сожалению, эта книга не сохранилась до наших дней, мы знаем о ней благодаря греческому математику и философу Симпликию Киликийскому (490–560). Фактически Птолемей говорил, что если рассмотреть три перпендикулярные прямые, то невозможно провести четвертую прямую, перпендикулярную к трем другим. Таким образом, четвертого измерения не существует. Однако Птолемей лишь доказывает, что невозможно воспроизвести четыре измерения в нашем трехмерном пространстве.
Позже, при попытке дать геометрическую интерпретацию алгебраических уравнений, возникла идея, что могут существовать пространства более высоких размерностей, но некоторые математики отзывались об этой возможности как о «неестественной». Английский математик Джон Валлис (1616–1703) в своей работе «Алгебра» назвал четвертое измерение «чудовищем, возможным в природе не более, нежели химера или кентавр. Длина, ширина и толщина полностью заполняют пространство. Даже фантазия не может описать, как четвертое измерение может существовать наряду с этими тремя».
Были и те, кто пытался принять существование четвертого измерения на духовном уровне. Например, английский философ Генри Мор (1614–1687) утверждал, что души имеют четыре измерения. Эта идея, как мы увидим в пятой главе, стала очень популярной. В этой связи немецкий философ Иммануил Кант (1724–1804) писал: «Наука обо всех этих возможных видах пространства, несомненно, представляла бы собой высшую геометрию, какую способен построить конечный ум… Если возможно, чтобы существовали протяжения с другими измерениями, то весьма вероятно, что Бог где-то их действительно разместил. Поэтому подобные пространства вовсе не принадлежали бы к нашему миру, они должны были бы составлять особые миры».
В одной из своих работ Кант утверждал, что левая рука является зеркальным отражением правой и что мы не можем идеально совместить руку с ее отражением. Однако Август Фердинанд Мёбиус (1790–1868) впервые заметил, что при вращении правой руки в гипотетическом четырехмерном пространстве она может стать своим зеркальным отражением — левой рукой, вернувшись в трехмерное пространство.