Вдобавок ко всему при ближайшем рассмотрении Большой взрыв выглядит весьма странно. Вообразите себе булавку, стоящую на острие: малейший толчок — и она упадет. Так же и с Большим взрывом. Окружающий нас огромный мир, полный галактик, образуется только при том условии, что энергия первичного взрыва выверена с немыслимой точностью. Ничтожное отклонение приводит к космологической катастрофе: либо огненный шар коллапсирует под действием собственного тяготения, либо Вселенная оказывается почти пустой.
Космология Большого взрыва просто постулирует, что огненный шар обладал требуемыми свойствами. Среди физиков преобладало мнение, согласно которому наука может описать, как развивалась Вселенная из заданной начальной конфигурации, но попытки разобраться, почему все началось именно с этого конкретного состояния, выходят за рамки физики. Вопросы, связанные с этим начальным состоянием, считались "философией", что на языке физиков означает напрасную трату времени. Впрочем, это мнение не делало Большой взрыв менее загадочным.
И вот теперь Гут рассказывал нам о том, что завесу тайны, окружающую Большой взрыв, можно приподнять. Новая теория могла раскрыть его природу и объяснить, почему первичный огненный шар был так тонко настроен. Аудитория затихла. Все были заинтригованы.
Новая теория давала Большому взрыву необыкновенно простое объяснение: Вселенная раздувалась отталкивающим тяготением! Ключевую роль в теории играла гипотетическая сверхплотная материя с крайне необычными свойствами. Самым необычным среди них было то, что она порождала мощное отталкивающее гравитационное поле. Гут предположил, что в ранней Вселенной было некоторое количество такой материи. Много ему не требовалось: достаточно было крошечного кусочка.
Рис. 1.1. Кусочек гравитационно отталкивающей материи.
Внутреннее гравитационное отталкивание заставило бы этот кусочек очень быстро расширяться. Если бы он состоял из обычного вещества, его плотность падала бы с расширением, но странная антигравитационная материя ведет себя совсем по-другому: ее второе ключевое свойство состоит в неизменной плотности, так что ее общая масса пропорциональна объему, который она занимает. По мере роста размеров кусочка его масса увеличивается, так что его отталкивающая гравитация становится все сильнее и он все быстрее расширяется. Короткий период такого ускоренного расширения, которое Гут назвал инфляцией, может увеличить крошечный исходный кусочек до чудовищных размеров, превосходящих всю наблюдаемую сегодня Вселенную.
Поразительный рост массы в ходе инфляции может на первый взгляд показаться нарушением самого фундаментального закона природы — принципа сохранения энергии. Согласно знаменитой формуле Эйнштейна Е = mc2 энергия пропорциональна массе. (Здесь Е — энергия, m — масса, а c — скорость света.) Выходит, энергия раздувающегося куска материи должна вырасти в колоссальное число раз, тогда как закон сохранения энергии требует, чтобы она оставалась постоянной. Этот парадокс исчезает, если учесть вклад в энергию, который дает гравитация. Уже давно известно, что гравитационная энергия всегда отрицательна. Раньше это казалось не столь уж важным, но теперь приобрело поистине космическое значение. В то время как положительная энергия материи растет, его компенсирует растущая отрицательная гравитационная энергия. Полная энергия остается постоянной, как и требует закон сохранения.
Чтобы обеспечить период инфляции завершением, Гут ввел условие, что гравитационно отталкивающаяся материя должна быть нестабильной. При распаде ее энергия порождает горячий огненный шар элементарных частиц. Он продолжает по инерции расширяться, но теперь уже состоит из обычной материи, его гравитация становится притягивающей, и расширение постепенно замедляется. Момент распада антигравитационной материи отмечает конец инфляции и в данной теории играет роль Большого взрыва.
Красота этой идеи заключалась в том, что одним махом инфляция объясняла, почему Вселенная столь велика, почему она расширяется и почему вначале она была такой горячей. Необъятная расширяющаяся Вселенная появилась практически из ничего. Все, что было нужно, — это микроскопический кусочек гравитационно отталкивающего материала. Гут честно признавал, что не знает, откуда взялся этот кусочек, но отрицать его достижения было трудно. "Часто говорят, что нельзя получить нечто из ничего, — говорил он, — но в конечном счете Вселенная могла достаться нам даром".