Эти наблюдения обнаружили, что чем дальше находится другая галактика, тем быстрее она от нас удаляется. Вселенная расширяется таким образом, что расстояние между любыми двумя галактиками со временем постоянно увеличивается (рис. 1.14). Это открытие сделало ненужной космологическую постоянную, введенную, чтобы обеспечивать статическое решение для Вселенной. Позднее Эйнштейн называл космологическую постоянную величайшей ошибкой в своей жизни. Однако, похоже, она вовсе не была ошибкой: недавние наблюдения, описанные в главе 3, говорят о том, что в действительности космологическая постоянная может иметь небольшое, отличное от нуля значение.
Наблюдения за галактиками говорят о том, что Вселенная расширяется: расстояния между почти любой парой галактик увеличивается.
Общая теория относительности радикально изменила содержание дискуссий о происхождении и судьбе Вселенной. Статическая Вселенная может существовать вечно или быть создана в ее нынешнем виде некоторое время назад. Однако если галактики сейчас разбегаются, это означает, что в прошлом они должны были располагаться ближе. Около 15 миллиардов лет назад они буквально сидели друг на друге и плотность была очень высокой. Это было состояние «первичного атома», как назвал его католический священник Жорж Аеметр, первым начавший изучать рождение Вселенной, которое мы теперь именуем Большим взрывом.
Эйнштейн, видимо, никогда не воспринимал Большой взрыв всерьез. Он, похоже, считал, что простая модель однородного расширения Вселенной должна нарушиться, если попробовать проследить движения галактик назад во времени, и что небольшие боковые скорости галактик приведут к тому, что они не столкнутся. Он считал, что ранее Вселенная могла находиться в фазе сжатия, но еще при весьма умеренной плотности испытать отражение и перейти к нынешнему расширению. Однако, как нам теперь известно, для того чтобы ядерные реакции в ранней Вселенной смогли наработать то количество легких элементов, которое мы наблюдаем, плотность должна была достигать по крайней мере тонны на кубический сантиметр, а температура — десяти миллиардов градусов. Более того, наблюдения космического микроволнового фона указывают на то, что плотность, вероятно, достигала триллиона триллионов триллионов триллионов триллионов триллионов (1 с 72 нулями) тонн на кубический сантиметр.
Стодюймовый телескоп Хукера в обсерватории Маунт-Вилсон.
Нам также известно, что общая теория относительности Эйнштейна не позволяет Вселенной отразиться, перейдя из фазы сжатия в фазу расширения. Как будет рассказано в главе 2, мы с Роджером Пенроузом смогли показать: из общей теории относительности вытекает, что Вселенная началась с Большого взрыва. Так что теория Эйнштейна действительно предсказывает, что время имеет начало, хотя ему самому эта идея никогда не нравилась.
Еще менее охотно Эйнштейн признавал предсказание общей теории относительности о том, что для массивных звезд время должно прекращать свое течение, когда их жизнь заканчивается и они не могут больше генерировать достаточно тепла для сдерживания собственной силы притяжения, которая стремится уменьшить их размеры. Эйнштейн полагал, что такие звезды должны приходить к равновесному конечному состоянию, но теперь мы знаем, что для звезд, вдвое превышающих по массе Солнце, подобного конечного состояния не существует. Такие звезды будут сжиматься, пока не станут черными дырами областями пространства-времени, настолько искривленными, что свет не может выйти из них наружу (рис. 1.15).