Выбрать главу

115. Don N. Page (15 January 1976). "Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole". Phys. Rev. D 13, 198, abstract. DOI: http://dx.doi.org/10.1103/PhysRevD.13.198

116. Thomas N. Taylor, Edith L. Taylor, Michael Krings (2009). "Paleobotany: The Biology and Evolution of Fossil Plants", 2nd ed. Academic Press, pp. 47–54.

117. Thomas N. Taylor, Edith L. Taylor, Michael Krings (2009). "Paleobotany: The Biology and Evolution of Fossil Plants", 2nd ed. Academic Press, pp. 49–50, 52, 55, 57.

118. Kevin D. McKeegan et al. (July 2007). "Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland", Geology 35 (7), 591, p. 593. http://sims.ess.ucla.edu/PDF/McKeegan_et_al_2007_Geology.pdf

119. James Attwater, Aniela Wochner & Philipp Holliger (20 October 2013). "In-ice evolution of RNA polymerase ribozyme activity". Nature Chemistry 5, 1011–1018, p. 1011. http://physwww.mcmaster.ca/~higgsp/4S03/Attwater2013.pdf

120. Walter Gilbert and Sandro J. de Souza (1999). Raymond F. Gesteland, Thomas R. Cech, John F. Atkins, eds. "The RNA World", 2nd ed. Cold Spring Harbor Laboratory Press, pp. 226–227. http://rna.cshl.edu/content/free/chapters/09_rna_world_2nd.pdf

121. Enrique Meléndez-Hevia (30 Nov 2009). "From the RNA world to the DNA-protein world: clues to the origin and early evolution of life in the ribosome". Journal of Biosciences 34 (6), 825–827, pp. 826–827. http://www.ias.ac.in/jbiosci/dec2009/825.pdf

122. Stefan Bengtson (Dec 2002). "Origins and Early Evolution of Predation". Paleontological Society Papers 8, pp. 293–294. http://www.nrm.se/download/18.4e32c81078a8d9249800021552/Bengtson2002predation.pdf

123. Maldener, Iris, and Muro-Pastor, Alicia M (18 October 2010). "Cyanobacterial Heterocysts". In: eLS. John Wiley & Sons. Abstract. DOI: http://dx.doi.org/10.1002/9780470015902.a0000306.pub2

124. Nicholas J. Butterfield (Sep 2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology 26 (3), 386–404, abstract. DOI: http://dx.doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2

125. Abderrazak El Albani et al. (01 July 2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature 466, 100–104. DOI: http://dx.doi.org/10.1038/nature09166

126. Nicholas J. Butterfield (Jan 2005). "Probable Proterozoic fungi". Paleobiology 31(1):165–182, abstract. DOI: http://dx.doi.org/10.1666/0094-8373(2005)031%3C0165:PPF%3E2.0.CO;2

127. Richard K. Grosberg and Richard R. Strathmann (2007). "The Evolution of Multicellularity: A Minor Major Transition?". Annu. Rev. Ecol. Evol. Syst. 38:621–54, p. 622. http://www-eve.ucdavis.edu/grosberg/Grosberg%20pdf%20papers/2007%20Grosberg%20%26%20Strathmann.AREES.pdf

128. Guy M. Narbonne (January 7, 2005). "The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystem". Annu. Rev. Earth Planet. Sci. 33:421–42, p. 421. http://geol.queensu.ca/people/narbonne/NarbonneAREPS2005Final.pdf

129. Charles J. Lada (2006 March 20). "Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single". The Astrophysical Journal, 640:L63–L66, L63. http://iopscience.iop.org/1538-4357/640/1/L63/fulltext/

130. B.D. Mason and W.I. Hartkopf (2008). S. Hubrig, M. Petr-Gotzens, A. Tokovinin (Eds.). "Multiple Stars Across the H-R Diagram". Springer, pp. 151–152.

131. Borgonie G. et al. (2 June 2011). "Nematoda from the terrestrial deep subsurface of South Africa", Nature, 474, 79–82, pp. 79–81. http://www.princeton.edu/geosciences/people/onstott/pdf/Borgonieetal11-Hmephisto.pdf

132. Roberto Danovaro et al. (2010). "The first metazoa living in permanently anoxic conditions". BMC Biology 8 : 30, pp. 1–2. DOI: http://dx.doi.org/10.1186/1741-7007-8-30

133. Thomas Gold (1 July 1992). "The deep, hot biosphere". Proc. Natl. Acad. Sci. USA 89(13), 6045–6049, p. 6045. http://www.pnas.org/content/89/13/6045.full.pdf+html

134. J. Thomas Beatty et al. (Jun 28, 2005). "An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent". Proc Natl Acad Sci USA 102(26): 9306–9310, pp. 9306–9307, 9309. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166624/

135. "A Planet With Planets? Spitzer Finds Cosmic Oddball". NASA News & Features 29 Nov. 2005. http://www.nasa.gov/vision/universe/starsgalaxies/spitzerf-20051129.html

136. Ignasi Ribas (26 February 2010). A. G. Kosovichev, A. H. Andrei & J.-P. Rozelot, eds. "The Sun and stars as the primary energy input in planetary atmospheres". Proceedings of the International Astronomical Union, 5:3–18, p. 4. DOI: http://dx.doi.org/10.1017/S1743921309992298

137. K.-P. Schröder and Robert Connon Smith (May 1, 2008). "Distant future of the Sun and Earth revisited". Mon. Not. R. Astron. Soc. 386, 155–163, pp. 156, 158. DOI: http://dx.doi.org/10.1111/j.1365-2966.2008.13022.x

138. "Open Clusters". Harvard-Smithsonian Center for Astrophysics. Web. January 6, 2015. http://www.cfa.harvard.edu/research/oir/open-clusters

139. Roberto Sanchis-Ojeda et al. (25 July 2012). "Alignment of the stellar spin with the orbits of a three-planet system". Nature 487, 449–453. DOI: http://dx.doi.org/10.1038/nature11301

140. "NASA Lunar Scientists Develop New Theory on Earth and Moon Formation". NASA News & Features 30 October 2012. http://www.nasa.gov/topics/solarsystem/features/moon_formation.html

141. "Hubble Yields Direct Proof of Stellar Sorting in a Globular Cluster". HubbleSite News Release October 24, 2006. http://hubblesite.org/newscenter/archive/releases/2006/33