Среди элементарных частиц, сильным видом полей — обладают, помимо протонов и нейтронов, все элементарные частицы, состоящие из кварков, т. е. т. н. составные, или сложные элементарные частицы (гипероны, резонансы и т. п.), которые рассмотрим несколько позже. (Поэтому возможны, например, т. н. гиперядра (= содержащие гипероны, вместо протонов или нейтронов, и быстро распадающиеся)).
Сильных полей — лишены т. н. фундаментальные, или простые элементарные частицы (т. е. не состоящие из кварков) — электроны, нейтрино и т. п. На эти частицы, сильные поля — не действуют (эти частицы не несут соответствующего заряда, т. е. сильных полей).
Ещё одно свойство сильного поля — в том, что оно, подобно гравитационному полю, никогда не бывает отталкивающим, т. е. сильный заряд — всегда только притягивающий. Антисильного поля — науке неизвестно (даже у частиц т. н. антивещества).
Сильное поле обладает также удивительным свойством насыщаемости (отдалённо напоминающей насыщаемость химических связей): например, один протон / нейтрон — может притянуть лишь ограниченное число соседних частиц в ядре.
Это, в принципе, всё основное, что известно в рамках теории поля, о сильном (ядерном) виде полей. (Более продвинутые представления о полях — имеются в рамках квантовой механики и теории относительности, которые рассмотрим чуть позже).
Слабые поля
Следующий вид полей, из числа открытых в 20-м веке, который сейчас рассмотрим — носит название слабого. Этим видом полей, и соответственно, слабым зарядом — обладают практически все виды элементарных частиц (в т. ч. электроны, протоны, нейтрино и т. п.).
Слабое поле — оправдывает своё название, т. к. по силе (= константе взаимодействия) — оно является почти самым слабым (лишь гравитационное поле слабее его).
Вдобавок к этому, слабое поле — имеет невероятное, сверхбыстрое убывание напряжённости (силы) с расстоянием, — ещё более быстрое, чем у сильных (ядерных) полей:
Действие слабого поля является заметным лишь на расстояниях в 1 000 раз меньших, чем расстояния, на которых эффективно действуют сильные (ядерные) поля. Поэтому слабое поле — стало известно лишь при изучении совершенно мизерных масштабов пространства (а именно, расстояний порядка 10–16 см).
Слабое поле традиционно рассматривается как не связанное с притягивающими или отталкивающими зарядами, но приводящее лишь к превращениям частиц (например, распаду (свободного) нейтрона, и т. п.). Но с другой стороны, отталкивающее действие, обусловленное слабым полем — можно видеть, например, в известном явлении упругого столкновения нейтрино с частицами или ядрами, приводящем к обмену импульсами (т. н. упругое рассеяние нейтрино).
Далее: Подробнее и более глубоко, слабые поля, как и другие, как уже говорилось, рассматриваются в квантовой механике и теории относительности, о чём — чуть позже.
Глюонные поля
Последний вид полей, из числа открытых в 20-м веке — получил название глюонного поля. Оно определённым образом связано с ядерным (сильным) полем, о чём подробнее — чуть позже. Глюонные поля — связывают кварки друг с другом в сложных элементарных частицах (протонах, гиперонах, мезонах и т. п.). Силы глюонного притяжения между кварками, как считается — настолько сильны, что до сих пор, учёным не удалось вырвать ни одного кварка ни из одной сложной элементарной частицы. Т. е. ни один кварк не получен в свободном состоянии! Теоретическое объяснение этому — нашлось очень удивительное: предполагается, что напряжённость глюонных полей, в отличие от всех других видов полей, с расстоянием — не падает, а наоборот, возрастает. Оказывается, возможно и такое…
Получается, что если пытаться разорвать сложную элементарную частицу (например, протон), то энергия, которую мы будем прилагать, будет тратиться на увеличение напряжённости глюонного поля, и т. о. чем дальше кварки будут отдаляться друг от друга — тем сильнее они будут притягиваться друг к другу (и противодействовать разрыву сложной элементарной частицы (также энергия будет тратиться на рождение пар частица-античастица, и т. п.)). Поэтому разорвать сложную частицу на отдельные кварки — оказывается невозможно даже теоретически. Сложные элементарные частицы, в результате, несмотря на то, что являются, как известно, состоящими из кварков, могут считаться такими же элементарными, как и простые элементарные частицы (т. е. электроны, нейтрино и т. п.).
В целом, глюонные поля — самые сильные поля, имеющиеся в природе. Почему же эти поля столь малозаметны в окружающем Мире, на макроуровне? Дело в том, что глюонные поля — обладают удивительным свойством насыщаемости: они способны связывать лишь кварки в отдельной сложной элементарной частице, а на кварки соседних сложных элементарных частиц, несмотря на значительно большие расстояния до них и возрастание (или как минимум, неуменьшение) силы с расстоянием, глюонные поля, в целом — не действуют.