Выбрать главу

Это привело к удлинению года примерно на 2 часа с момента возникновения Солнечной системы. Земля вращается вокруг Солнца не по идеальному кругу, а по эллипсу. Эксцентриситет, или разница между "длинной осью" и "короткой осью" нашей орбиты, меняется со временем, в то время как орбитальный период Земля-Солнце, который определяет наш год, меняется медленно в течение существования нашей Солнечной системы.

Если мы пренебрегаем другими планетами и потерей массы Солнца из-за солнечного ветра и ядерного синтеза, мы обнаружим, что полный угловой момент системы Земля-Солнце (и Луна, если хотите) остается неизменным.

Даже несмотря на всю сложную астрофизику, происходящую в нашей Солнечной системе, очевидно, что продолжительность года, вероятно, является наиболее стабильной крупномасштабной характеристикой, которую мы могли бы использовать для привязки нашего времени к нашей планете. Поскольку скорость света является известной и измеримой константой, "световой год" возникает как производная единица расстояния и также меняется со временем очень незначительно; на протяжении миллиардов лет он держится на уровне ~99,98%.

Другое важное определение, которое мы иногда используем, также, хотя и косвенно, основано на определении того, что Земля вращается вокруг Солнца и составляет год: парсек. Вместо того, чтобы основываться только на времени, оно основано на астрономических углах и тригонометрии. По мере того, как Земля вращается вокруг Солнца, видимое положение неподвижных звезд относительно друг друга будет меняться точно так же, как если вы откроете только один глаз, а затем поменяете глаза, более близкие объекты смещаются относительно более удаленных объектов фона. В астрономии мы называем это явление "параллаксом" и вместо расстояния между двумя типичными человеческими глазами используем максимальное расстояние между положением Земли относительно Солнца: диаметр ее орбиты, или около 300 000 000 километров.

Объект, который, кажется, смещается относительно удаленного фона объектов на одну угловую секунду (1/3600 градуса), определяется как один парсек: около 3,26 световых лет.

Ближайшие к Земле звезды будут периодически смещаться относительно более удаленных звезд по мере того, как Земля движется в пространстве по орбите вокруг Солнца. До того, как была создана гелиоцентрическая модель, мы искали не "сдвиги" с базовой линией ~300 000 000 километров в течение ~6 месяцев, а скорее базовую линию ~12 000 километров за одну ночь: диаметр Земли при ее вращении его ось. Расстояния до звезд настолько велики, что только в 1830-х годах был обнаружен первый параллакс с базовой линией в 300 миллионов километров. Сегодня с помощью миссии ESA Gaia мы измерили параллакс более 1 миллиарда звезд.

Но зачем связывать наше определение времени, распространяющееся на всю Вселенную, с произвольным движением одной планеты в одной галактике вокруг своей родительской звезды? Оно не объективно, не абсолютно и бесполезно за пределами наших земных интересов. Ни дни, ни годы не являются универсально применимыми в качестве мер времени, и ни световые годы, ни парсеки не являются универсально применимыми в качестве мер расстояния.

Существуют способы определения времени, основанные на более объективных физических мерах, и они не страдают теми же недостатками, что и использование геоцентрического определения. Но у нас есть несколько довольно веских причин не использовать эти меры времени, поскольку каждая из них имеет свой набор как плюсов, так и минусов.

Вот несколько вариантов, которые стоит рассмотреть, и вы сами сможете решить, это лучше или хуже нынешней годовой (и земной) системы времени. Квантовая природа Вселенной говорит нам, что определенные величины имеют встроенную в них неопределенность и что пары величин имеют свои неопределенности, связанные друг с другом.

На этой иллюстрации показана ранняя Вселенная, состоящая из квантовой пены, где квантовые флуктуации велики, разнообразны и важны в самых маленьких масштабах.