Выбрать главу

Единственная загвоздка в том, что "бесцветный" объект можно получить, используя либо три цвета (красный, зеленый, синий), три антицвета (голубой, пурпурный, желтый) или цвет-антицвет (красный-голубой, зеленый-пурпурный или желто-синий). Кварки и антикварки, которые взаимодействуют с сильным ядерным взаимодействием, имеют цветные заряды, соответствующие красному, зеленому и синему (для кварков), а также голубому, пурпурному и желтому (для антикварков). Любая бесцветная комбинация красного + зеленого + синего, голубого + желтого + пурпурного или соответствующая комбинация цвета/антицвета разрешена в соответствии с правилами сильной силы. Если в этих хорошо изученных системах появятся новые явления, они могут указывать на наличие новой фундаментальной силы, помимо известных четырех.

Для простоты мы можем игнорировать слабое ядерное взаимодействие, отметив лишь, что, если фундаментальная или составная частица нестабильна по своей природе, то ей энергетически выгодно распасться на частицу или набор частиц с меньшей массой покоя.

Чтобы понять, какие структуры мы способны формировать во Вселенной, нужно вернуться на ранние стадии и посмотреть, что возникает и почему. Мы можем посмотреть на то, что осталось, а затем начнем понимать, каким более сложным структурам было позволено появиться.

На ранних стадиях горячего Большого взрыва было достаточно доступной энергии и достаточно плотных условий, так что столкновения были частыми, что позволило создать каждую из фундаментальных частиц (и античастиц) в больших количествах. Однако по мере того, как Вселенная расширяется и охлаждается, становится меньше доступной энергии (через E = mc²) для создания новых частиц, но парам частица-античастица очень легко аннигилировать. Кроме того, любые нестабильные частицы будут распадаться за счет слабого взаимодействия на более стабильные.

По прошествии сравнительно короткого периода времени Вселенная состоит в основном из фотонов, электронов, позитронов, нейтрино и антинейтрино, а также небольшого количества кварков. В самой ранней Вселенной существовало огромное количество кварков, лептонов, антикварков и антилептонов всех видов.

Спустя крошечную долю секунды после Большого взрыва большинство этих пар материя-антиматерия аннигилируют, оставляя очень крошечный избыток материи над антиматерией. Как возник этот избыток, является загадкой, известной как бариогенез, и одной из величайших нерешенных проблем современной физики.

Это первый шаг: верхние и нижние кварки соединятся вместе, образуя протоны и нейтроны. Причина проста: верхние и нижние кварки имеют электрические заряды +⅔ и -⅓ соответственно, поэтому на очень малых расстояниях электромагнитные силы отталкивают одинаковые заряды. Однако вы не можете раздвинуть их слишком далеко друг от друга, иначе сильное ядерное взаимодействие станет большим, заставив эти частицы снова "сцепиться" вместе точно так же, как сжимается растянутая пружина.

Так почему же протоны и нейтроны получаются только от верхних и нижних кварков? Для создания нейтрального по цвету объекта требуется три фермиона (а кварки - это фермионы), поэтому у вас может быть либо два верхних и один нижний кварк (протон), либо один верхний и два нижних кварка (нейтрон). У вас не может быть трех верхних или трех нижних кварков, потому что есть еще одно правило: принцип исключения Паули, который не позволяет двум идентичным фермионам иметь одно и то же квантовое состояние.

У кварков есть спин, поэтому в протоне или нейтроне могут быть два одинаковых фермиона, если один имеет спин "вверх", а другой "вниз", но нет никакого способа вместить туда третий кварк того же типа. Сильные и электромагнитные силы вместе объясняют, почему существуют протоны и нейтроны. Отдельные протоны и нейтроны - бесцветные объекты: единственный допустимый тип кваркового состояния во Вселенной сегодня.

Хотя сильное взаимодействие осуществляется безмассовыми (глюонными) частицами, единственная сила, существующая между отдельными связанными состояниями, обусловлена мезонами, которые сами по себе довольно массивны, что сильно ограничивает диапазон действия сильного взаимодействия.

Из протонов и нейтронов Вселенная может построить более крупные и массивные атомные ядра. Опять же, здесь вступают в игру сильные и электромагнитные силы. Под действием электромагнитной силы протоны будут отталкивать друг друга, а нейтроны не будут ни притягивать, ни отталкивать протоны или другие нейтроны. Однако сильное ядерное взаимодействие действует между всеми объектами с цветовым зарядом, и если вы расположите протоны и/или нейтроны достаточно близко друг к другу, кварки внутри одного объекта "увидят" кварки внутри другого объекта, что позволит им обменяться глюонами и испытать сильное ядерное взаимодействие. В целом, протоны и нейтроны нейтральны по цвету, поэтому на больших расстояниях от них сильное ядерное взаимодействие падает до нуля, и им можно пренебречь. Но на очень близких расстояниях "пружинистость" между ближайшими кварками как в протон-протон, нейтрон-нейтрон, или пара протон-нейтрон становится существенным.