Какова светимость или лучистая энергия звезды? Мы можем определить яркость светящегося объекта, если знаем его видимую яркость и расстояние от нас. Вещи имеют тенденцию выглядеть более тусклыми, чем дальше они находятся. Таким образом, тусклая звезда может иметь низкую светимость или быть очень яркой и находиться очень далеко. Кажущаяся яркость систематически уменьшается пропорционально квадрату расстояния. Это мы хорошо знаем из экспериментов со светящимися объектами на Земле, например с фарами встречного транспорта во время ночного движения.
Итак, как только мы узнаем расстояние до звезды и ее видимую яркость, мы можем вычислить, насколько яркой она будет на расстоянии от нашего Солнца или ближе, и таким образом определить ее внутреннюю физическую яркость; его светимость.
И насколько велика эта звезда? Лабораторные эксперименты показывают нам, что светимость плотного светящегося объекта (вспомните еще раз нить лампочки, которая светится, потому что она горячая) увеличивается с увеличением его температуры (на самом деле температура в четвертой степени) и площади его поверхности (квадрата радиуса для сферического объекта). То же самое и со звездами. Хотите узнать размер звезды? Определите его светимость (из измерений видимой яркости и видимого положения), определите его температуру (из измерений видимого цвета), а затем рассчитайте его размер из соотношения между размером, светимостью и температурой.
Из чего сделана звезда? С помощью точных измерений звездных спектров, набора видимых цветов, излучаемых звездой, и сравнения со спектрами светящихся газов в лабораториях на Земле мы можем обнаружить свет, излучаемый определенными химическими элементами во внешних слоях звезд: водородом, гелием, углеродом, кислородом, и так далее. Так мы можем определить состав поверхности звезды - ее фотосферы, внешнего слоя, который светится и который мы наблюдаем.
Хотите узнать химический состав звезды? Измерьте ее видимый цвет. Мы можем определить такие свойства, как возраст и масса, используя аналогичные методы, основанные на измерениях видимых свойств, а также на эволюции этих свойств, а также путем сравнения многих звезд друг с другом в поисках закономерностей и тенденций в яркости и цвете.
Меня удивляет и вдохновляет тот факт, что все, что мы знаем о Вселенной, основано на каскаде простых измерений, которые может выполнить каждый. Это один из способов, с помощью которого мы можем и должны чувствовать себя значимыми во Вселенной, настолько огромной, что ее масштабы иногда могут заставить нас чувствовать себя маленькими и несущественными. Мы можем превратить наблюдения в понимание, проводя прямые измерения и применяя к этим измерениям наши знания о физических процессах здесь, на Земле. Это действительно суперсила!
Итан Сигел
LIGO успешно сжимает квантовые состояния, превосходя пределы Гейзенберга
В стремлении обнаружить гравитационные волны существует ряд препятствий, которые - как бы мы ни старались - продолжают стоять на нашем пути. С 2015 года, с появлением сначала усовершенствованных детекторов LIGO, а затем и детектора Virgo, человечество напрямую обнаружило гравитационные волны от определенного набора источников: слияния черных дыр звездной массы, слияния нейтронных звезд и (возможно) слияния черных дыр. звездные пары дырка-нейтрон.
Совсем недавно другой метод, использующий синхронизацию пульсаров, обнаружил космический "гул" или сумму всех фоновых сигналов гравитационных волн с гораздо более длительным периодом времени. Тем не менее, возможности того, что мы можем сделать с помощью современных технологий, все еще ограничены. Мы ограничены по частоте, а это означает, что мы можем обнаруживать только источники из систем, которые сильно излучают гравитационные волны с определенным узким диапазоном орбитальных периодов. (Вот почему LIGO чувствителен только к источникам относительно малой массы.)