Именно этот метод использовали команды LIGO и Virgo для успешного обнаружения гравитационных волн: на данный момент это делалось более 100 раз. В то время как LIGO и Virgo ограничены возможностью наблюдения черных дыр звездной массы (около 300 солнечных масс или меньше) и нейтронных звезд, сливающихся друг с другом, из-за коротких периодов существования этих объектов по сравнению с более массивными, которые также генерируют сигналы гравитационных волн. их успехи проложили путь для будущих детекторов гравитационных волн, которые будут чувствительны к более длительным периодам, как здесь, на Земле, так и в космосе в ближайшем будущем.
Когда два плеча имеют абсолютно одинаковую длину и через них не проходит гравитационная волна, сигнал равен нулю, а интерференционная картина постоянна. При изменении длины плеча сигнал становится действительным и колебательным, а интерференционная картина меняется со временем предсказуемым образом.
Понимание квантового предела
Конечно, как и при любом квантовом измерении, невозможно одновременно измерить так называемые дополнительные величины с произвольной точностью. Квантовая природа реальности, наиболее известная на примере принципа неопределенности Гейзенберга, гарантирует, что для определенных пар свойств, чем лучше вы измеряете (или узнаете) один аспект реальности, тем большей становится вызванная неопределенность в том, что известно. как его "дополняющее" количество. Например: Если вы измеряете положение объекта все точнее и точнее, импульс этого объекта становится все более неопределенным, и наоборот. Если вы все более и более точно измеряете время жизни нестабильной частицы, энергия (включая даже энергию массы покоя) этой частицы становится все более неопределенной, и наоборот. Если вы измеряете ориентацию частицы, ее угловой момент становится более неопределенным, и наоборот. Если вы измеряете собственный спин частицы в одном направлении, ее собственный спин в двух других взаимно перпендикулярных направлениях становится более неопределенным, и наоборот.
Существует также множество других примеров: напряжение и свободный электрический заряд, электрическое поле и плотность электрической поляризации, магнитный векторный потенциал и плотность свободного электрического тока и так далее. Хотя соотношение неопределенности "положение-импульс" на сегодняшний день является самым известным, это лишь один из многих примеров квантовой неопределенности. Эта диаграмма иллюстрирует неотъемлемое соотношение неопределенности между положением и импульсом. Когда одно известно более точно, другое по своей сути менее вероятно для точного познания.
Гораздо менее ценным, чем эти традиционные соотношения неопределенностей, является то, что очень важно для детектора LIGO, поскольку оно имеет отношение к фотонам, которые движутся вперед и назад, снова и снова, через плечи интерферометра: соотношение неопределенности между амплитудой и фаза светового сигнала. Интересная аналогия, особенно актуальная в эпоху после Covid-19: когда вы совершаете видеозвонок с другим человеком, учитывая ограниченную общую пропускную способность.
Имея лишь ограниченный объем общих данных, которые могут поместиться в конвейер, приходится идти на компромисс, но этот компромисс позволяет вам выбирать между: хотите ли вы одновременно аудио и видео среднего качества, хотите ли вы получить высококачественный звук за счет видео худшего качества, или хотите ли вы получить видео хорошего качества за счет прерывистого и нерегулярного звука. Аналогично, с амплитудой и фазой сигнала существует общая сумма "внутренней неопределенности", которую невозможно устранить из обоих этих компонентов сигнала вместе взятых, независимо от того, какой физический трюк вы используете.
Но с помощью техники сжатых квантовых состояний вы можете найти компромисс между степенью неопределенности, которую вы допускаете в каждой "амплитудной" и "фазовой" точности по отдельности, чтобы извлечь максимально возможный сигнал из ваших данных в попытке обнаружить гравитационные волны. Точно так же, как при ограниченной полосе пропускания видеовызов должен выбирать между хорошим качеством звука и плавным качеством видео, так и импульсу света будет присуще противоречие между знанием его амплитуды и чрезвычайно точным измерением его фазы.