Выбрать главу

Вы можете не думать о квантовой неопределенности как о фундаментальном ограничении, когда речь идет об астрономии, но в области гравитационных волн наши детекторы настолько точны, что каждое незначительное улучшение может привести к значительному улучшению, когда дело доходит до исследования далеких земель. и слабая Вселенная. Как выразилась Лиза Барсотти из Массачусетского технологического института: "Мы не можем контролировать природу, но мы можем контролировать наши детекторы... Квантовая природа света создает проблему, но квантовая физика также дает нам решение". Присоединившись к LIGO и Virgo в поисках гравитационных волн, обсерватория гравитационных волн KAGRA добавляет к этому четвертому детектору и, как и Virgo, вскоре также будет использовать частотно-зависимое квантовое сжатие. Конечным результатом станет более четкое окно в гравитационно-волновую Вселенную, чем когда-либо прежде.

***

Тим Андерсен

Мультивселенная мертва?

С тех пор, как была разработана теория вероятностей, люди спорят о том, что она означает. Существуют две основные школы мысли: байесовская и частотная. Большинство людей изучают частотный подход к статистике. В частотном подходе вероятность основана на законе больших чисел: повторяющиеся эксперименты приближаются к предельному случаю. Например, если я подброшу монету достаточное количество раз, количество орлов со временем приблизится к 50%. Подбрасывание монеты один раз не связано с реальной вероятностью. Частотисты также могут извлекать вероятность из однократного выполнения одного и того же эксперимента и усреднения по количеству повторений. То есть, если я подброшу 10 000 монет один раз, около 5 000 выпадут орлом. Исследования в медицине, такие как определение эффективности вакцины, основаны на частотном подходе.

Байесовский подход предполагает, что вероятность является мерой неопределенности. В то время как для частого сторонника подбрасывание монеты один раз не имеет вероятности, для байесовца имеет, потому что вероятность основана на моем предварительном знании возможных результатов: орла и решки и их вероятности. Мне не нужно проводить эксперимент, чтобы узнать вероятность. Когда мы смотрим на результаты исследования вакцины, в которых говорится, что она эффективна на 95%, и применяем эти данные к одному человеку в качестве меры неопределенности, мы применяем байесовский подход.

Главный открытый вопрос в квантовой физике заключается в том, является ли Вселенная байесовской или частотной. То есть: имеет ли вероятность квантовых результатов какой-либо смысл, кроме повторения одного и того же эксперимента снова и снова?

Хорошо известно, что существует разрыв между квантовым предсказанием и измерением. Прогнозы вероятностей подчиняются правилу Борна, которое означает, что вероятность обнаружения частицы в определенной точке или в определенном состоянии связана с квадратом величины ее волновой функции. Волновая функция - это сложное математическое описание состояния квантовой системы, которой может быть частица, поле или даже макроскопический объект, такой как человек.

Однако, когда мы проводим квантовый эксперимент, нам приходится проводить его много-много раз либо подряд с последовательностью частиц, либо одновременно с разными частицами. Статистика, которую генерирует эксперимент, подтверждает предсказание правила Борна. Это приводит к противоречию: являются ли правило Борна и связанные с ним волновые функции просто математическими удобствами, которые позволяют нам предсказывать статистику (частотный подход), или это реальные сущности, существующие отдельно от повторения экспериментов (байесовский подход).

Все зависит от того, как вы интерпретируете эксперименты. В классической статистике мы предполагаем наличие скрытых переменных в любом эксперименте. Эти переменные представляют фактическое состояние того, что мы пытаемся измерить. Скрытые переменные могут быть довольно простыми, как состояние монеты, брошенной до того, как вы на нее посмотрите, которая имеет только два значения: орел или решка, или они могут быть чрезвычайно сложными, как состояние глобальной погодной системы.