Но на самом деле мы измеряем и маркируем отдельные субатомные частицы не так. Обычно у нас нет системы отдельных частиц, и мы хотели бы знать, с какой из них мы взаимодействуем; вместо этого у нас есть столкновение серии частиц и/или античастиц, некоторые из них нейтральны, а некоторые заряжены, некоторые из них стабильны, а некоторые нестабильны, некоторые из них взаимодействуют, а некоторые нет.
Тогда мы создаем различные условия вокруг точки столкновения - точки, которую мы, создатели экспериментов, контролируем - чтобы попытаться "уговорить" эти частицы взаимодействовать.
При высоких энергиях становятся возможны открытия, которые не происходят при более низких энергиях. Современные детекторы частиц подобны слоеному пирогу, способному отслеживать обломки частиц, чтобы восстановить то, что произошло, как можно ближе к точке столкновения.
Если вы создадите частицу, которая распадается в результате слабых взаимодействий, с типичным временем жизни в диапазоне от ~ 10-10 секунд (для лямбда-барионов), до ~ 10-8 секунд (для каонов и заряженных пионов), до ~ 10-6 секунд (для мюонов), то обычно можно непосредственно измерить время полета, поскольку перед распадом частица пролетит несколько миллиметров или больше.
Если точность будет примерно на уровне аттосекунды, то, возможно, мы сможем начать измерять положения частиц либо с помощью более быстрых импульсов, либо расположив наши детекторы еще ближе к точке столкновения. Но позиционирование детектора не поможет, потому что детекторы состоят из атомов, и поэтому существует предел того, насколько близко вы можете расположить детектор к точке столкновения.
Итан Сигел
Существует ли пятая фундаментальная сила природы?
Несмотря на все, что мы узнали о природе Вселенной - от фундаментального, элементарного уровня до самых больших космических масштабов, которые только можно себе представить, - мы абсолютно уверены, что предстоит сделать еще много великих открытий. Наши лучшие на данный момент теории впечатляют: квантовые теории поля, описывающие электромагнитное взаимодействие, а также сильные и слабые ядерные взаимодействия, с одной стороны, и общая теория относительности, описывающая эффекты гравитации, с другой стороны. Где бы этим теориям ни бросали вызов, от субатомных до космических масштабов, они всегда выходили победителями.
И тем не менее, эти теории не могут отразить все, что существует. Современная физика не может объяснить, почему во Вселенной больше вещества, чем антивещества. Мы также не можем понять, какова природа темного вещества, является ли темная энергия чем-то иным, кроме космологической постоянной, и как именно произошла космическая инфляция, создавшая условия для горячего Большого взрыва. И на фундаментальном уровне мы не знаем, объединяются ли каким-либо образом все известные силы под каким-то всеобъемлющим зонтиком.
У нас есть подсказки о том, что во Вселенной есть нечто большее, чем то, что мы знаем сейчас, но есть ли новая фундаментальная сила? Хотите - верьте, хотите - нет, но у нас есть два совершенно разных подхода, чтобы попытаться найти ответ на этот вопрос.
Подход No1: грубая сила
Если вы хотите открыть что-то до сих пор неизвестное во Вселенной, один из подходов - просто исследовать это более экстремальным способом, чем когда-либо прежде. Планируется: построить телескоп, чтобы видеть дальше во времени или с более высоким разрешением, чем когда-либо прежде; построить ускоритель частиц, способный сталкивать частицы с более высокими энергиями, чем когда-либо прежде, или разработать аппарат для охлаждения материи ближе к абсолютному нулю, чем когда-либо прежде.
Все это примеры применения подхода "грубой силы". Исследуйте Вселенную в более экстремальных условиях, чем вы когда-либо исследовали раньше, и это может открыть что-то шокирующее, удивительное и захватывающее. Это вариант, который мы всегда должны изучать, когда дело касается Вселенной, поскольку наши текущие ограничения по всем этим параметрам определяются только совокупными ограничениями наших технологий на тот момент, когда мы решили сделать крупные инвестиции на этих фронтах.
Благодаря усовершенствованным технологиям и возможности заново инвестировать в эти (и подобные) подходы мы можем постоянно расширять границы человеческих знаний на всех важных границах. В науке мы говорим о преодолении наших прежних ограничений с точки зрения открытия нового "пространства открытий", и иногда - например, когда мы взломали атомное ядро в 20 веке - именно здесь появляются новые фундаментальные открытия.