Галактики также имеют разные формы (круглые, эллиптические, вытянутые), но это могут быть различия в ориентации из-за того, что мы видим с нашей точки зрения здесь, на Земле.
Видимая форма. Какую форму имеет объект с нашей точки зрения? Мы можем идентифицировать формы, глядя на изображения далеких небесных объектов - некоторые галактики выглядят как спирали, звезды - как крошечные точки, туманности - как тонкие облака - но мы можем наблюдать эти объекты только с нашей точки зрения здесь, на Земле. На изображении галактик выше некоторые выглядят спиралевидными, другие круглыми, а некоторые вытянутыми и тонкими. Галактика, которая с нашей точки зрения выглядит округлой, на самом деле может быть галактикой с плоским диском, которую мы видим лицом к лицу.
Видимое положение на небе. Чтобы определить местонахождение небесных объектов, мы измеряем их относительное угловое расстояние и применяем систему координат, аналогичную земной широте и долготе, проецируемой на небо. Объекты в небе могут быть разделены на много градусов, и мы можем измерить эти видимые положения с поразительной точностью. Угловые размеры и расстояния менее десяти тысячных градуса являются обычным явлением.
Мы можем напрямую измерять свойства волн, собранные с помощью инструментов на телескопах и других объектах здесь, на Земле, или которые мы запустили в космос. Свойства световой волны включают частоту (количество волн, проходящих в секунду), длину волны и амплитуду волны (интенсивность). Наши глаза воспринимают различия в частоте или длине волны как различия в цвете. За последние несколько лет мы также научились обнаруживать гравитационные волны.
Примеры частиц, которые мы непосредственно наблюдаем, включают электроны, а также нейтрино - почти безмассовые и меньшие по размеру, чем электроны, - которые испускаются во время очень высокоэнергетических процессов, таких как ядерные реакции в ядрах Солнца и других звезд или во время звездных взрывов. Мы также наблюдаем взаимодействие высокоэнергетических электронов, протонов и альфа-частиц - ядер атомов гелия - с атмосферой Земли. Эти частицы, также называемые космическими лучами, испускаются астрономическими объектами во время высокоэнергетических процессов.
Вот и все. За исключением гравитационных волн и частиц высокой энергии, которые требуют более сложных средств обнаружения, каждый может провести эти измерения с помощью телескопа скромного размера у себя во дворе. Конечно, несмотря на язвительное название этого эссе, мы знаем физическую природу небесных объектов, таких как звезды и галактики; у нас есть способы перейти от этих семи обыденных измерений к этим интересным физическим свойствам.
В начале недавнего вводного курса астрономии я поставил перед своими студентами задачу: перечислить физические свойства звезд, которые позволяют нам полностью определить звезду, отличить ее от других астрономических объектов и сравнить ее с другими звездами.
Вот список, который они создали: температура, светимость (сколько световой энергии звезда излучает с течением времени), размер, масса, химический состав, возраст и расстояние от Земли.
Все, что мы знаем о звездах, основано на измерениях видимых свойств. Начнем с температуры. Поскольку у нас нет космического термометра, мы определяем температуру, измеряя видимую яркость объекта в различных видимых цветах и сравнивая их друг с другом, а также с аналогичными измерениями светящихся объектов на Земле - например, нитей лампочки, температуру которых мы можем измерить напрямую. Плотные объекты, которые светятся ярче в красном свете, холоднее, чем объекты, которые светятся ярче в синем свете. Используя спектр - звездный свет, рассеянный в радуге видимых цветов - мы можем еще точнее определить звездную температуру. Хотите узнать температуру звезды? Измерьте его видимый цвет.
Как насчет расстояния? Космической линейки также не существует, поэтому мы определяем расстояние, проводя точные измерения параллакса - того, как угловые положения объектов на небе меняются по мере нашего обращения вокруг Солнца, - а затем применяем методы триангуляции (геометрии), аналогичные тем, которые используются геодезистами на Земле. Возможно, вы помните, что если мы знаем длину короткой стороны прямоугольного треугольника и угол между длинной стороной и гипотенузой треугольника, мы можем вычислить длину длинной стороны. Для звезды короткая сторона треугольника - это расстояние Земля-Солнце, угол - это параллакс, который мы измеряем по изменению углового положения звезды, а длинная сторона - это расстояние от Солнца до звезды. Хотите узнать расстояние до звезды? Измерьте его видимое положение на небе и то, как это положение меняется со временем.