Выбрать главу

В 1973 г. А. Xacегaва и Ф. Тапперт применили нелинейное уравнение Шрёдингера к распространению лазерного света в световоде и нашли условия, при которых их можно было бы наблюдать. В 1980 г. эти солитоны наблюдали Л. Молленауэр, Р. Столен и Дж. Гордон. В их опытах солитоны пробегали почти километр без заметного искажения формы. Однако если мы хотим, чтобы солитонные сигналы можно было бы принимать на очень больших расстояниях, нужно как-то компенсировать потерю их энергии. Заметим, что скорость солитонов не зависит от их энергии, но высота уменьшается, а ширина увеличивается (их произведение постоянно).

В самых лучших на сегодня световодах потери составляют примерно пять процентов на километр. Поэтому энергия солитона на расстоянии L км будет равна Е0е-0,05L, где Е0 — начальная энергия солитона (вспомните закон радиоактивного распада, только здесь роль времени играет расстояние). На расстоянии L = 20 км энергия уменьшится в е  2,72 раз.

Обсуждались разные способы компенсации этих потерь. Самый простой состоит в том, что в световод примерно через каждые сорок километров впускается лазерная подсветка. Частота и мощность подсвечивающих лазеров подбираются так, чтобы молекулы световода могли отбирать часть энергии подсвечивающего луча, а затем быстро отдавать ее солитону. Это напоминает механизм самонаведенной прозрачности, но здесь молекулы возбуждаются внешним источником, а не самим солитоном, так что возможна подкачка энергии.

Этот механизм усиления солитонов тесно связан с эффектом комбинационного рассеяния света в веществе, открытым в 1928 г. индийскими физиками Ч. Раманом и К. Кришнаном и, независимо от них, Л. И. Мандельштамом и Г. С. Лансбергом. Его часто называют просто эффектом Рамана, что, конечно, исторически несправедливо. Суть эффекта состоит в том, что при рассеянии света его спектральный состав изменяется. Говоря словами Л. И. Мандельштама: «Мы здесь... имеем не что иное, как модуляцию падающей волны собственными колебаниями молекул... так же, как спектр обычного телефонного передатчика несет в себе весь ваш разговор..., так и спектр рассеянного света несет то, что молекула говорит о себе. Изучая его, вы изучаете свойства молекулы, вы изучаете ее строение».

Мы не можем входить в детали, но для понимания солитонного телеграфа это и не нужно. Достаточно понимать, что при посредничестве молекул световода солитон может получать энергию от подсвечивающего лазера, и все можно устроить так, что эта энергия полностью скомпенсирует потери. Это и позволяет солитонам проходить большие расстояния, сохраняя индивидуальность. Конечно, существуют и ограничения, связанные с тем, что случайные взаимодействия солитонов с молекулами световода несколько меняют его скорость. Поэтому на очень больших расстояниях (несколько тысяч километров) могут начаться сбои: скажем, один импульс догонит другой. Ограничения на скорость передачи информации солитонными импульсами вызваны тем, что сам импульс нельзя сделать слишком коротким и что между импульсами необходимо оставлять достаточно большой зазор. Можно рассчитывать на минимальную длительность импульса 1 пикосекунды (т. е. 10-12 с). Если отправлять импульсы не чаще, чем через 10 пикосекунд, то один бит информации передавался бы за 10 пикосекунд, т. е. скорость передачи информации 1011 бит/ч = 100 гигабит/с. Видимо, это максимум того, на что реально можно рассчитывать, но это очень неплохо, в сто раз лучше, чем в обычной волоконной связи. Кроме того, солитонная связь должна быть куда более надежной (не нужна регенерация!) и более дешевой.

В опытах, с которых был начат этот рассказ, было показано, что все теоретические ожидания и предсказания оказались правильными. Удалось передать солитоны на расстоянии больше 4000 км без существенного искажения их формы. Теперь практическая реализация проекта солитонного телеграфа не за горами. Вероятно, в середине следующего десятилетия он заработает! Это будет первый пример реального применения солитонов в технике, подобного телеграфу, телефону, радио. Возможно и применение этих солитонов в ЭВМ с оптическими элементами памяти и оптическими линиями связи.

Вся эта история интересна еще и тем, что она позволяет проследить весь путь от рождения идеи до ее технической реализации. После фундаментальной работы Захарова и Шабата (1971 г.) довольно быстро (1973 г.) возникла идея получить оптические солитоны в волокнах. Как раз в это время научились делать хорошие волокна, а лазеры уже давно стали привычным инструментом физиков. В этом же 1973 г. сформировалась идея об использовании комбинационного рассеяния для усиления импульсов в световодах В 1980 г. удалось наблюдать солитоны, а еще через три года сформировалась мысль соединить одно с другим — применить комбинационное рассеяние к «усилению» солитонов. После пяти лет расчетов и экспериментов были, наконец, выполнены опыты, доказавшие возможность технической реализации солитонной передачи информации. Теперь в дело включатся технологи, инженеры, бизнесмены. Схематически можно представить этот путь от чистой идеи до ее материального воплощения примерно так: