I = Iс sin (φ1 - φ2),
где Ic — максимальный (критический) ток Джозефсона. Расчет Джозефсона, основанный на квантовой механике, дал именно этот результат. (Подчеркнем, что наше рассуждение только иллюстрирует происхождение этой формулы, не надо относиться к нему слишком серьезно.)
Но Джозефсон получил еще одно очень важное соотношение. Если разность фаз меняется с течением времени, то между левой и правой частями появляется электрическое поле (разность потенциалов). Мы не будем пытаться получить это соотношение «псевдоквантовыми» рассуждениями, а приведем лишь результат. Разность потенциалов V пропорциональна скорости изменения разности фаз, φ = ΔφΔt, т. е.
V = (Ф0/2πс),
где Ф0 — определенный выше квант магнитного потока, а с — скорость света в вакууме. Появление этого коэффициента пропорциональности не случайно и еще раз напоминает нам, что эффект Джозефсона имеет квантовую природу. (Это соотношение легко получить с помощью соображений размерности, однако для этого необходимо хорошо понимать размерности электрических и магнитных величин.)
Из двух соотношений Джозефсона сразу следуют два основных эффекта. Во-первых, ток может течь через переход даже при отсутствии на нем напряжения (V = 0). Во-вторых, если поддерживать постоянное напряжение, то в переходе возникнут высокочастотные колебания, частота которых определяется по второй формуле Джозефсона. Этот эффект, называемый джозефсоновской генерацией, впервые наблюдали И. К. Янсон, В. М. Свистунов и И. Д. Дмитренко.
Джозефсоновскую генерацию можно понять достаточно наглядно, используя лишь минимум квантовых представлений. Когда под действием приложенного к контакту постоянного электрического напряжения V куперовские пары просачиваются через изолирующий барьер, они приобретают энергию 2eV. Однако по другую сторону барьера энергия пар должна быть прежней. Лишняя энергия сбрасывается в виде фотона с энергией hv = 2eV. Этот же результат следует и из второй формулы Джозефсона. Джозефсоновский ток будет периодической функцией времени t, если фаза φ пропорциональна t. Полагая φ = 2πvt и вспоминая определение кванта магнитного потока, сразу находим из второй формулы Джозефсона, что V = hv/2e.
Возможен, конечно, и обратный процесс — джозефсоновское поглощение. Таким образом, джозефсоновский контакт можно использовать как генератор электромагнитных волн или как приемник (эти генераторы и приемники могут работать в диапазонах частот, не достижимых другими методами). Широкое применение получил и первый эффект Джозефсона, его используют для измерения чрезвычайно малых магнитных полей и токов.
Солитоны в длинных джозефсоновских переходах
Выше упоминалось, что джозефсоновский контакт математически эквивалентен маятнику. Чтобы понять это, вспомним, что у контакта есть определенная емкость C. При переменном напряжении через контакт протекает максвелловский ток смещения Iм = CV. Так как через изолирующий слой могут просачиваться не только куперовские пары, но и нормальные электроны, то у контакта есть некоторое сопротивление R: соответствующий «нормальный» ток равен IN = V/R. Короче, электрическую схему контакта можно представить в виде рис. 7.17.
Полный ток, текущий через контакт, равен сумме джозефсоновского тока, тока смещения и нормального тока. Выражая все эти точки через φ, легко найти уравнение, описывающее зависимость фазы φ от времени.
Читатель может без труда получить это уравнение самостоятельно:
Здесь jc и j пропорциональны токам Iс и I. Это уравнение в точности совпадает с уравнением маятника, на который действует внешняя «сила» j и «сила трения» Все, что мы знаем о движениях маятника, полностью применимо и к джозефсоновскому контакту.
Нетрудно понять, как построить цепочку из джозефсоновских контактов, совершенно аналогичную цепочке связанных маятников. Ее электрическая схема изображена на рис. 7.18.