Итак, мячи не просто обменялись скоростями, но и, сверх того, как ясно видно на рисунке, центр O2 теперь несколько опережает точку O'1, в которой находился бы первый мяч, если бы столкновения не было, а O1 несколько отстает от O'2. Такой сдвиг всегда происходит, если время взаимодействия мячей t'0 - t0 достаточно мало. Читатель может сам убедиться, что при достаточно большом времени взаимодействия O2, наоборот, отстанет от O'1, а O1 опередит O'2. Hемного труднее найти то значение времени взаимодействия, при котором O2 совпадает с O'1, а O1 — c O'2 (о т в е т: , R — радиус мячей). Интересно также найти O2 - O'1 = O'2 - O1 при известных значениях v1, v2, t'0 - t0 (о т в е т: ).
Эффект ускорения и отставания становится тем более заметным чем больше размер мячей и меньше их относительная скорость (здесь, конечно, предполагается, что время взаимодействия t'0 - t0 не очень сильно зависит от относительной скорости). Такую же зависимость от относительной скорости можно наблюдать и во взаимодействии уединенных волн. Конечно, она сложнее, так как уединенная волна не имеет резкой границы и отличается от мяча и в других отношениях.
Аналогию можно сделать еще более наглядной, если изображать мячи прямоугольниками, высота которых увеличивается пропорционально кинетической энергии. Тогда их столкновение будет выглядеть совсем похожим на столкновение солитонов. Позже мы познакомимся с другими уединенными волнами, форма которых не зависит от скорости и которые еще больше похожи на частицы.
Почему же все-таки так долго никто не замечал этого самого удивительного свойства уединенной волны? Понятно, что Рассел мог не увидеть этого, хотя, учитывая его необычайную наблюдательность, это тоже как-то надо объяснить. Но ведь уже в 1952 г. была проделана целая серия опытов с уединенными волнами в современном варианте лотка братьев Веберов и с использованием киносъемки. С применением современной техники наблюдение столкновения уединенных волн и обнаружение описанных только что эффектов, казалось бы, не такое трудное дело! По-видимому, объяснение этой удивительной слепоты ученых может быть только одно — все, начиная с Рассела, упорно считали уединенную волну только волной, хотя и довольно необычной.
В какой-то степени в этом повинно и название «уединенная волна», подчеркивающее волновую природу явления. Поэтому когда в 1965 г. американские ученые М. Крускал и Н. Забуски, изучая явления столкновений уединенных волн с помощью электронной вычислительной машины, ясно увидели, что уединенные волны во многом подобны частицам, они немедленно убрали слово «волна», а из «уединенной» (solitary) составили термин «солитон» (soliton), созвучный электрону, протону и другим названиям элементарных частиц *).
*) Первоначально солитон был назван «солитроном», по созвучию с электроном. Однако в последний момент стало известно о существовании некоей фирмы «Солитрон», и авторам пришлось убрать «р», чтобы не вступать с ней в тяжбу по поводу незаконного использования «торговой марки». Фирма давно прогорела, а солитон живет и здравствует!