Если линейности нет, то все выглядит гораздо сложнее. Возьмем самое простое уравнение y2 + аx2 = 0. Сразу ясно, что многообразие решений (x, у) будет иметь совершенно разный вид при разных знаках а. При а 0 оно состоит из единственной точки О = (0, 0). При а = 0 — это точки, лежащие на оси Оx, т. е. точки (x0, 0), где x0 — любое число. Если же а 0, то все решения имеют вид или , или , т. е. лежат либо на прямой ОА, либо на прямой ОB (рис. 3.9).
Ясно, что в этом случае многообразие решений нелинейно. Например, сумма двух написанных решений с одним и тем же х0 равна (2х0, 0), а х = 2х0, у = 0 не удовлетворяет нашему уравнению при .
Так обстоит дело в самом простом случае. При усложнении уравнения уже совсем не просто выяснить, имеет ли оно решения, и если имеет, то сколько и как эти решения зависят от параметров, входящих в уравнения. В нашей простой задаче единственный параметр — это число а. При а 0 есть только нулевое решение, при а = 0 решения образуют линейное многообразие, а при а 0 многообразие решений становится нелинейным. В этом примере нелинейное многообразие устроено слишком просто, но небольшое изменение уравнения (скажем, добавка к левой части слагаемого bх, где число b может быть очень малым) приводит к очень серьезным, качественным изменениям структуры множества решений (убедитесь в этом!).
Вообще, такая сильная, качественная зависимость решений от параметров, появление новых решений (или их исчезновение) — самое характерное свойство нелинейных уравнений. С простыми примерами такого проявления нелинейности в движениях тел мы сталкиваемся очень часто. Когда мы пытаемся сдвинуть с места стоящий на ровном месте автомобиль, мы постепенно увеличиваем усилие, но автомобиль не двигается, пока усилие не достигнет определенного значения. После того как автомобиль начнет двигаться, его довольно легко разогнать, прилагая меньшее усилие. Этот эффект возникает из-за нелинейности силы трения — при движении автомобиля сила трения меньше, чем в покое. Нелинейность этого типа можно назвать «пороговой» нелинейностью. При достаточно малых воздействиях (ниже «порога») система находится в одном состоянии (автомобиль не движется), при достижении порога система переходит в другое состояние, в котором воздействие можно уменьшить или даже убрать (катящийся автомобиль может двигаться некоторое время по инерции).
Пороговая нелинейность ясно видна и в механизме возбуждения нервного импульса. Малые раздражения, вообще говоря, не приводят к возбуждению импульса; он пойдет лишь при достаточно сильном раздражении. Если бы не было этой нелинейности, наша жизнь стала бы совершенно невозможной. В теории солитонов более важны нелинейности других типов. С ними мы познакомимся в следующих главах.
ЧАСТЬ 2
НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И ВОЛНЫ
Нужно обращать острие ума на самые незначительные
и простые вещи и долго останавливаться на них, пока
не привыкнем отчетливо и ясно прозревать в них
истину.
В истории солитона много непонятного, но почему в прошлом веке не был открыт солитон, о котором пойдет речь в следующей части, объяснить просто невозможно. Цепочки из связанных маятников изучали многие ученые: проводили с ними опыты, рассчитывали волны, бегущие по ним. Однако никто не сумел увидеть возникающую в таких цепочках уединенную волну, которая сегодня считается одним из образцовых солитонов. В оправдание физиков и математиков прошлого века можно сказать, что и после того, как этот солитон был обнаружен в теоретической работе советских физиков Я. И. Френкеля и Т. А. Конторовой (1938 г.), современным ученым понадобилось почти тридцать лет для выяснения его истинной солитонной природы. К сожалению, снова и снова приходится убеждаться, что для настоящего освоения открытия нужно не менее двадцати-тридцати лет!
С солитоном Френкеля и Конторовой (ФК-солитон) стоит познакомиться поближе. Он устроен не сложнее, чем солитон Рассела или Кортевега и де Фриза (КдФ-солитон), встречается в самых разных физических системах и его легко наблюдать. ФК-солитон имеет неизменную форму, не зависящую от его скорости. Он может покоиться или двигаться, причем зависимость его энергии Е от скорости v такая же, как зависимость энергии от скорости для частицы с массой m0, которая следует из специальной теории относительности