Отличие заключается в том, что вместо скорости света с в вакууме в этой формуле возникает v0 — скорость распространения обычных синусоидальных волн малой амплитуды в среде, по которой бежит солитон. Более того, для ФК-солитонов существуют античастицы (антисолитоны). Солитоны отталкиваются друг от друга, а солитон и антисолитон притягиваются и могут образовать связанное состояние — солитонный «атом». И все это можно увидеть на очень простой механической модели, которую совсем нетрудно сделать! Фарадею, Максвеллу, Кельвину и другим физикам прошлого века, предпочитавшим изучать сложные явления на простых моделях, этот солитон наверняка понравился бы.
Мы подойдем к нему издалека, сначала придется немного разобраться с нелинейными колебаниями и волнами. Тому, кто хочет по-настоящему понять устройство солитонов, необходимо познакомиться с нелинейными колебаниями одного маятника и понять, как распространяются волны в системе маятников, связанных друг с другом.
Глава 4
ПОРТРЕТ МАЯТНИКА
А круговое движение первее прямолинейного: оно про-
ще и более совершенно.
Уравнение маятника
Рассмотрим движения хорошо известного математического маятника, т. е. небольшого грузика с массой m, подвешенного на абсолютно жесткой, нерастяжимой проволочке длины l; массу проволочки будем считать пренебрежимо малой. Обычно изучают малые колебания и поэтому говорят о грузике на нитке, но мы хотим изучать любые движения и потому подвесим наш жесткий маятник на хорошо смазанной оси в точке О' так, чтобы он мог свободно вращаться, а не только качаться вблизи положения равновесия. Угол φ, измеряемый в радианах, отсчитывается от нижнего положения против часовой стрелки (рис. 4.1). Полный оборот соответствует φ = 2π, два оборота — 4π и т. д. Движению по часовой стрелке соответствует уменьшение угла φ. для полного оборота по часовой стрелке φ = -2π и т. д. Для определенности будем считать, что в момент времени t = 0 маятник отклонен на нулевой угол, φ(0) = 0. В качестве координаты грузика можно взять угол φ или же алгебраическое значение длины дуги s = φ • l.
В каждой точке А движение происходит в направлении касательной к окружности под действием тангенциальной (направленной по касательной) составляющей силы тяжести. Как ясно из рисунка, эта составляющая равна (с учетом нашего выбора положительного направления движения). Скорость движения грузика по окружности равна v = s' = lφ', где s' и φ' обозначают производные по времени t. Пользуясь тем, что малые смещения грузика направлены по касательной к окружности, точно так же определим тангенциальное (т. е. по направлению дуги окружности) ускорение а = v' == s" = lφ", где s" и φ" — вторые производные по времени. Второй закон Ньютона для движения грузика можно написать в виде ma = , или окончательно
Соотношение (4.1), выражающее угловое ускорение грузика φ" через его положение φ(t) в тот же самый момент времени, называют дифференциальным уравнением движения грузика. Решить его значит найти такую зависимость угла φ от времени t, для которой в каждый момент выполнено соотношение (4.1).
Дифференциальное уравнение описывает все возможные движения маятника. Чтобы найти какое-то конкретное движение, надо еще добавить некоторые дополнительные условия. Например, если задать положение и скорость грузика в начальный момент времени, то движение будет полностью определено. Как сказал бы математик, существует единственное решение дифференциального уравнения (4.1), удовлетворяющее начальным условиям φ(0) = φ0, φ'(0) = φ'0, (φ0 и φ'0 могут быть любыми).