Выбрать главу

*) Эти слова принадлежат польскому физику Мариану Смолуховскому, одному из создателей теории броуновского движения. За развитием некоторых основных физических идей (таких, как волна, частица, поле, относительность) читатель может проследить по замечательной популярной книге А. Эйнштейна и Л. Инфельда «Эволюция физики» (М.: ГТТИ, 1956).

Тем не менее было бы неправильно не упомянуть о создателях этих идей, и в этой книге уделено достаточно много внимания людям, впервые высказавшим те или иные ценные мысли, независимо от того, стали они знаменитыми учеными или нет. Автор особо старался извлечь из забвения имена людей, недостаточно оцененных своими современниками и потомками, а также напомнить о некоторых малоизвестных работах достаточно знаменитых ученых. (Здесь для примера рассказано о жизни нескольких ученых, мало известных широкому кругу читателей и высказавших идеи, в той или иной мере имеющие отношение к солитону; о других приведены лишь краткие данные.)

Эта книга не учебник, тем более не учебник по истории науки. Возможно, не все приводимые в ней исторические сведения изложены абсолютно точно и объективно. История теории колебаний и волн, в особенности нелинейных, изучена недостаточно. История же солитонов пока вообще не написана. Может быть, кусочки мозаики этой истории, собранные автором в разных местах, пригодятся кому-нибудь для более серьезного исследования. Мы же во второй части книги в основном сосредоточимся на физике и математике нелинейных колебаний и волн в том виде и объеме, в котором это необходимо для достаточно глубокого знакомства с солитоном.

Во второй части сравнительно много математики. Предполагается, что читатель достаточно хорошо понимает, что такое производная и как с помощью производной выражаются скорость и ускорение. Необходимо также вспомнить некоторые формулы тригонометрии.

Совсем без математики обойтись нельзя, но на самом деле нам понадобится немного больше того, чем владел Ньютон. Двести лет назад французский философ, педагог и один из реформаторов школьного преподавания Жан Антуан Кондорсе сказал: «В настоящее время молодой человек по окончании школы знает из математики более того, что Ньютон приобрел путем глубокого изучения или открыл своим гением; он умеет владеть орудиями вычисления с легкостью, тогда недоступной». Мы добавим к тому, что Кондорсе предполагал известным школьникам, немногое из достижений Эйлера, семьи Бернулли, Д'Аламбера, Лагранжа и Коши. для понимания современных физических представлений о солитоне этого вполне достаточно. О современной математической теории солитонов не рассказывается — она весьма сложна.

Мы все же напомним в этой книге обо всем, что, нужно из математики, и, кроме того, читатель, которому не хочется или некогда разбираться в формулах, может просто бегло их просмотреть, следя лишь за физическими идеями. Вещи, более трудные или уводящие читателя в сторону от основной дороги, выделены мелким шрифтом.

Вторая часть в какой-то мере дает представление об учении о колебаниях и волнах, но о многих важных и интересных идеях в ней не говорится. Наоборот, то, что нужно для изучения солитонов, рассказано подробно. Читатель, который хочет познакомиться с общей теорией колебаний и волн, должен заглянуть в другие книги. Солитоны связаны со столь разными науками, что автору пришлось во многих случаях рекомендовать другие книги для более подробного знакомства с некоторыми явлениями и идеями, о которых здесь сказано слишком кратко. В особенности стоит заглянуть в другие выпуски Библиотечки «Квант», которые часто цитируются.

В третьей части подробно и последовательно рассказано об одном типе солитонов, который вошел в науку 50 лет назад независимо от уединенной волны на воде и связан с дислокациями в кристаллах. В последней главе показано, как в конце концов судьбы всех солитонов скрестились и родилось общее представление о солитонах и солитоноподобных объектах. Особую роль в рождении этих общих идей сыграли ЭВМ. Вычисления на ЭВМ, которые привели ко второму рождению солитона, были первым примером численного эксперимента, когда ЭВМ использовались не просто для вычислений, а для обнаружения новых, неизвестных науке явлений. У численных экспериментов на ЭВМ, несомненно, большое будущее, и о них рассказано достаточно подробно.