Выбрать главу

На этом простом приборе можно изучить все движения, которые были рассмотрены выше. Нужно только помнить, что трение приводит к затуханию колебаний, закон сохранения энергии становится приближенным и фазовый портрет маятника при наличии трения существенно изменяется (попробуйте показать, что для линейного маятника с трением окружности на фазовой плоскости переходят в спирали, накручивающиеся на точку φ = 0, φ' = 0).

На велосипедном колесе легко установить изохронность малых и неизохронность больших колебаний. Нетрудно также найти зависимость периода колебаний от амплитуды и установить качественный характер любых движений.

Однако построить экспериментальные графики движений не очень просто. Самый удобный способ — сделать киносъемку движений колеса, но это уже достаточно дорогостоящий опыт. Замечательно, что зависимость угла от времени для самых разных движений можно определить на опыте с помощью очень простой системы, которая, на первый взгляд, не имеет ничего общего с маятником.

Возьмем тонкую и достаточно длинную стальную проволочку. Она должна легко гнуться без заметной остаточной деформации. Если ее положить на стол и слегка сжать на концах, она примет форму полусинусоиды, как указано в верхней части рис. 4.15.

Проведем касательные к получившейся кривой и будем отсчитывать угол φ, как указано на рисунке. Длину дуги s на кривой будем отсчитывать от точки О, причем слева s  0, а справа s 0. Если на проволочке сделать петельку, как указано в нижней части рис. 4.15, то угол будет принимать значения от -π до +π, если считать проволочку бесконечно длинной. При этом зависимость φ от s описывается формулой (4.9), в которой вместо t надо подставить s, а ω0 определяется силой F, действующей на проволочку. Если проволочка бесконечно длинная, то петелька может располагаться в любом месте, она может свободно перемещаться вдоль проволочки. Эта петелька и есть простейшая модель солитона. Назовем этот солитон «ручным».

С движением маятника связаны любые формы изгиба проволочки. Каждой зависимости φ(s) от s можно поставить в соответствие некоторое движение маятника. Эта замечательная аналогия называется аналогией Кирхгофа в честь открывшего ее знаменитого немецкого физика Густава Кирхгофа (1824—1887) *). На самом деле он нашел гораздо более широкую аналогию между состояниями деформированных упругих тел и движениями твердого тела. К сожалению, о ней сегодня совершенно незаслуженно забыли. Мы немного поговорим о ней после того, как познакомимся с солитоном Френкеля.

*) Формы изгиба упругой проволочки первым изучил Леонард Эйлер. Их называют «эластиками Эйлера».

Заключительные замечания

Метод необходим для отыскания истины.

Р. Декарт

Мы заканчиваем самую трудную главу в этой книге, главное содержание которой — основные идеи теории нелинейных колебаний, изложенные на простейших, но не тривиальных примерах. Читателю, желающему понять, как устроены солитоны, необходимо ясно представить себе линейные и нелинейные колебания маятника. Особенно хорошо нужно понять энергетические соотношения и движения, фазовые траектории которых сепаратрисы (формулы (4.9), (4.10) и рис. 4.14). Эти решения позволят нам понять с помощью простых аналогий очень важные солитоны. Один из примеров — ручной солитон, который связан с асимптотическим движением маятника аналогией Кирхгофа. 

И я больше всего дорожу аналогиями, моими самыми верными учителями. И. Кеплер

Метод физических аналогий и моделей, которым с таким успехом пользовались великие физики прошлого века, и сегодня сохраняет ценность. Особенно плодотворен он в теории колебаний, волн и солитонов, где одни и те же уравнения описывают множество совершенно различных систем. Можно высказать некоторые общие принципы получения таких аналогий. Пусть состояния двух систем определяются одинаковым числом переменных, или, как говорят, обобщенных координат (например, угол φ для маятника, заряд конденсатора Q в колебательном контуре и т. д.). Предположим, что энергии этих систем Е1 и Е2 сохраняются и что посредством некоторого переобозначения обобщенных координат и параметров, характеризующих системы (массы, емкости, индуктивности и т. д.), можно сделать величины Е1 и Е2 одинаковыми функциями координат (с точностью до постоянного множителя). Тогда ясно, что системы полностью аналогичны и между их «движениями», каков бы ни был их смысл, можно установить полное соответствие.