*) Это то же самое, что движение по сепаратрисе (см. (4.9)).
Глава 5
ОТ МАЯТНИКОВ — К ВОЛНАМ
И СОЛИТОНАМ
Певучесть есть в морских волнах
Гармония в стихийных спорах.
Наглядный образ волн на поверхности воды всем хорошо известен, однако эти волны представляют собой очень сложное явление, и для первого знакомства лучше найти хорошую «карикатуру». Именно так поступил Ньютон, предложивший простую модель распространения звуковой волны. Основная идея Ньютона сводилась к тому, что при распространении волны каждая частица среды колеблется подобно маятнику и движение каждой частицы влияет на движение всех окружающих ее частиц (ближайших соседей).
Дальнейшее упрощение состоит в том, что частицы, которые могут двигаться и одновременно деформироваться, Ньютон заменяет массивными грузиками, соединенными упругими пружинками, лишенными массы. Тогда кинетическая энергия частицы среды сосредоточена на грузиках, а потенциальная энергия упругой деформации частицы запасается в пружинах. (Рассуждения Ньютона здесь, конечно, модернизированы, но ход его мыслей передается достаточно точно.) Даже после этих серьезных упрощений модель реальной трехмерной среды еще слишком сложна. Следующий шаг приводит к задаче, которая решается точно.
Волны в цепочке связанных частиц
Рассмотрим цепочку одинаковых частиц с массой m, соединенных упругими пружинками и движущихся по прямой. Физики называют эту систему моделью одномерного кристалла. Условимся поэтому называть частицы «атомами». Кавычки напоминают о том, что эти «атомы» пока не имеют никакого отношения к реальным физическим атомам. В дальнейшем мы их опускаем.
Пусть длина каждой пружинки в недеформированном состоянии равна α. Тогда покоящиеся атомы, перенумерованные, как указано на рис. 5.1, будут располагаться в точках с координатами nα, т. е. равновесное положение n-гo атома определяется координатой x0n = nα. Допустим теперь, что атомы отклонены от равновесного положения, так что координата n-гo атома равна хn (верхнее положение). Обозначим отклонение атома от равновесного положения буквой yn = хn - х0n = хn - nα и отложим отрезки yn над соответствующими точками x0n = nα.
Соединив их плавной кривой, получим график, изображающий отклонения атомов от положений равновесия.
Плавная кривая получится, конечно, не всегда. Если отклонения каких-нибудь соседних атомов отличаются достаточно сильно, то у кривой будут резкие изломы. Мы поэтому предположим, что наклон графика отклонений очень медленно меняется, Т. е. разность двух последовательных углов αn по модулю много меньше самих углов.
При этом получится плавная кривая, мало изменяющаяся на расстоянии α, и наша модель будет достаточно точно воспроизводить смещения частицы в непрерывной (сплошной) среде. Другими словами, если мы хотим на модели воспроизвести распространение волны в сплошной среде (упругая волна в стержне, звуковая волна в органной трубе, волна на скрипичной струне и т. д.), нужно брать частички малыми и располагать их на малых расстояниях друг от друга. Сверх этого, длина волны λ должна быть много больше расстояния между атомами.
Картину распространения волн в такой цепочке можно изучить на очень простом устройстве, для изготовления которого нужна хорошая и достаточно длинная плоская резиновая лента и большие скрепки (см. рис. 5.2). Разумеется, эта система гораздо сложнее, чем идеальная одномерная цепочка, и к тому же очень несовершенна.