Отступление в историю.
Семья Бернулли и волны
Эти простые наблюдения отвлекли нас от первоначальной задачи Ньютона — вычисления скорости распространения волны. Скоро мы к ней вернемся, а сейчас сделаем небольшое отступление в историю. Хотя Ньютон привел лишь решение задачи о вычислении скорости бегущей волны, он, конечно, размышлял и о стоячих волнах. В самом конце того раздела «Начал», в котором определяется скорость распространения звука, он очень коротко говорит об основной частоте тона органных труб и высказывает догадку, что длина стоячей звуковой волны в трубе, открытой на одном конце, равна учетверенной длине трубы. Представления о других возможных модах, равно как и ясного понятия о стоячих волнах вообще, у Ньютона нет.
Полная теория колебания в одномерной цепочке была построена Иоганном Бернулли (1667—1748) и его сыном Даниилом Бернулли (1700—1782). Вместе с братом Иоганна Якобом Бернулли (1654—1705) они — наиболее выдающиеся представители знаменитой династии швейцарских ученых. Семья Бернулли эмигрировала из Антверпена в ХVI в. спасаясь от жестокостей испанских завоевателей, и в конце концов осела в Базеле. Якоб и Иоганн Бернулли были учениками Лейбница и стали крупнейшими математиками своего времени. Под руководством Иоганна Бернулли изучали математику его сын Даниил и Леонард Эйлер. Семья Бернулли была тесно связана с Россией. В 1725 г. Даниил уехал в Петербург, где оставался до 1733 г. В следующем году за ним последовал и Эйлер, который провел в России почти полжизни. Бернулли и Эйлер опубликовали многие свои сочинения в трудах Петербургской академии наук и были ее членами.
Существование нормальных мод было установлено отцом и сыном Бернулли, а возможность разложения произвольного движения цепочки по нормальным модам (принцип суперпозиции, или принцип сложения колебаний) была открыта Даниилом Бернулли. Он был самым выдающимся физиком в семье Бернулли; наиболее знамениты его достижения в гидродинамике, кинетической теории газов и в теории колебаний. Надо отметить, что принцип суперпозиции, с помощью которого мы так просто изучили общее движение цепочки по легко определяемым нормальным модам, был признан и вошел в науку не сразу. В числе его противников были даже Эйлер и Лагранж. В своих исследованиях они очень близко подошли к открытию этого принципа, но имели достаточно серьезные основания сомневаться в его справедливости, о которых будет сказано чуть позже.
Впоследствии одномерную цепочку в связи с распространением звуковых волн в газах, жидкостях и твердых телах изучали Лагранж и Коши. Особенно полную теорию цепочек, состоящих из атомов разных сортов, разработал в конце прошлого века Кельвин. Он применил свою теорию к распространению световых волн в твердых телах и нашел простое объяснение явления дисперсии света *), открытого в середине XVII в. чешским ученым Яном Маркусом Марци и вновь открытого Ньютоном, не знавшим о работах Марци (вспомним о знаменитом опыте Ньютона по разложению солнечного света в спектр с помощью призм). Замечательная и глубокая работа Кельвина не была полностью понята и оценена современниками, а его модель была возрождена уже в двадцатом веке, когда начали изучать кристаллические решетки, состоящие из реальных атомов.
*) Слово «дисперсия» означает в переводе с латинского рассеяние, разброс. В оптике дисперсией обычно называют явление зависимости показателя преломления от частоты или длины волны. В общей теории волн дисперсию связывают с зависимостью скорости волны от ее длины, а соотношение между частотой и длиной волны называют дисперсионной формулой. Дисперсия очень важна в теории солитонов, и мы изучим ее подробно.
Волны Д'Аламбера и споры вокруг них
Воображение принимает в творчестве геометра не ме-
нее участия, чем в минуты вдохновения у поэта.
После исследований Бернулли по одномерным цепочкам Эйлер начал изучать колебания и струны, не пытаясь представить ее с помощью простой модели, а считая ее сплошной средой. При этом движение струны определено, если известно ее отклонение от положения равновесия у (t, х) как функция координаты х и времени. В уравнение, описывающее движение струны, входят, как мы увидим, не только производные по времени