у (t, х) = f (х - vt) + g (х + vt) , (5. 10)
в котором f и g могут быть произвольными функциями.
*) Вместе с Дени Дидро он возглавил работу над монументальной «Энциклопедией наук, искусств и ремесел», 33 тома которой вышли в свет с 1751 по 1777 гг. Это была первая в мире энциклопедия в современном смысле слова.
Это замечательное решение, которое называется решением Д'Аламбера (или волной Д'Аламбера), описывает все возможные движения струны при соответствующем выборе функций f и g **). Например, если g = 0, то решение Д'Аламбера дает волну, бегущую по оси х направо со скоростью v. Скорость v не произвольна, а определенным образом зависит от упругости и силы натяжения струны (характер этой зависимости сейчас нам не важен).
**) Так как решение Д'Аламбера описывает любые волны, которые могут распространяться по струне, то, зная это решение, можно вообще забыть об уравнении. Точно так же для описания всех возможных движений точечной частицы, на которую не действуют внешние силы, достаточно знать галилеев закон движения x = x0 + vt, забыв об уравнении Ньютона.
Если положить f (х) = sin (2πх/λ), то получим синусоидальную бегущую волну
Записывая эту волну в более привычном виде
находим обычное соотношение между частотой и длиной волны: . Общее решение (5.10) описывает и движение волнового импульса, изображенного на рис. 5.3. Описывает оно и стоячие волны. Например, если взять
f (х) = g (х) = ½ sin (2πх/λ),
то легко найти, что
у (t, х) = sin (2πх/λ) cos (2πvt).
В общем случае, если заданы начальные значения отклонений и скоростей всех точек струны, т. е. значения у и при t = 0 и всех значениях х, то можно найти вид функций f и g при всех значениях аргументов и тем самым определить все дальнейшее движение струны. Точно так же по начальным отклонениям и скоростям двух грузиков определялись неизвестные параметры А1, А2, t1, t2 в формуле (5.6); только теперь вместо неизвестных параметров определяются неизвестные функции f и g.
Мы еще не раз встретимся с конкретными применениями решения Д'Аламбера, а сейчас лишь отметим, что именно оно и вынудило Эйлера и Лагранжа отказаться от принципа суперпозиции Даниила Бернулли. Действительно, согласно этому принципу общее движение струны можно было бы представить как сумму (суперпозицию) гармонических синусоидальных движений, а это означало бы, что произвольную функцию можно представить в виде суммы тригонометрических функций. Такая возможность казалась Эйлеру и Лагранжу совершенно невероятной. Поэтому они придерживались мнения, что принцип суперпозиции хорош для систем из конечного числа материальных точек, но неприменим к таким «сплошным» объектам, как струна.
Разрешить многолетние споры вокруг этой проблемы сумел лишь Фурье в 1807 г., который показал, что произвольную функцию, определенную на конечном отрезке, действительно можно представить в виде бесконечной суммы тригонометрических функций. Это обобщение разложения на моды носит название ряда Фурье. Любопытно, что при доказательстве своей фундаментальной теоремы Фурье в наибольшей степени опирался на исследования Эйлера и Лагранжа. Отрицание Лагранжем принципа суперпозиции кажется тем более удивительным, что именно он первым ясно установил связь между колебаниями цепочки частиц и движениями струны.