Выбрать главу

Пора, видимо, написать это уравнение *). До сих пор оно было чем-то вроде таинственного персонажа в пьесе, которого все боятся, но никто не видел, и можно подумать, что это уравнение окажется очень сложным. На самом деле несложно догадаться, что уравнение должно быть очень простым, если у него так просто выглядит общее решение. В чем же состоит необычайная простота решения Д'Аламбера? Она заключается в том, что решение выражено через произвольные функции f и g, но каждая из них реально зависит не от координаты и времени, а от простейшей их линейной комбинации. Мы можем просто нарисовать графики функций f(x) и g(x) и двигать их равномерно в противоположных направлениях оси х. Сумма таких функций и будет в каждый момент времени изображать решение Д'Аламбера.

*) для понимания дальнейшего знать это уравнение полезно, но не обязательно. Вполне достаточно освоиться с бегущими волнами Д'Аламбера (5.10).

Это легко описать математически. Сначала найдем уравнение для волны, бегущей направо. Вспоминая определение производной получаем

Выбирая Δx = -vΔt, находим, что . Точно так же можно убедиться, что . Эти уравнения описывают волны, которые могут распространяться лишь в одну сторону. Такие уравнения полезны, если мы хотим описать распространение волны горения или нервного импульса. Для того чтобы найти уравнение, описывающее волны, бегущие в двух направлениях, проще всего поступить так. Заметим, что f и f' также зависят только от х - vt, и поэтому обе функции удовлетворяют тому же уравнению, что и f. Исключив смешанную производную f', легко найти, что . Точно так же убеждаемся, что . Так как операция дифференцирования линейна, то отсюда следует, что у = f + g удовлетворяет уравнению

Это и есть волновое уравнение Д'Аламбера. Мы получили его не из физической модели, а просто показали, что сумма любых двух функций f (х - vt) и g (x + vt) удовлетворяет этому уравнению. Ссылаясь на авторитет Д'Аламбера, мы утверждаем и обратное: всякую функцию у (t, х), производные которой по времени и координате удовлетворяют соотношению (5.11), можно представить как сумму двух таких функций.

Это простое уравнение и его обобщения на случай функций, зависящих от нескольких координат, играют такую же роль в физике непрерывных систем, как уравнение движения простого линейного маятника в механике материальной точки (в новых обозначениях оно записывается в виде ). Удивительно, что переход от одной точки к такому бесконечно более сложному объекту, как струна, «состоящая» из бесконечного числа точек, привел к столь простой теории. Удивительно также необычайное число приложений волнового уравнения — от волн в «океанах воды, воздуха и эфира», как сказал бы Рассел, — до волн, описывающих элементарные частицы.

В наше время волновое уравнение стало настолько привычным, что его эффективности никто уже не удивляется. Однако если попытаться мысленно охватить все, что было сделано с помощью этого уравнения, вообразить, какое богатство явлений природы скрывается за столь простой формулой, то эпитеты «удивительное» или «необычайное» не покажутся не уместными. Один выдающийся современный физик как-то написал популярную статью «О непостижимой эффективности математики в естественных науках». В эффективности волнового уравнения, конечно, есть что-то непостижимое, что бы ни говорили люди, которые умеют объяснить все. 

О дискретном и непрерывном

...Между отдельными существующими вещами всегда

находятся другие, а между ними опять другие. И, та-

ким образом, сущее беспредельно.

Зенон из Элеи, V в. до н. э.

Вернемся, однако, к «суровой прозе», воплощенной в уравнении (5.8). Оно связано не с близкой музам струной, а с прозаическими «грузиками на пружинках», да и выглядит куда менее элегантно, чем волновое уравнение. Тем не менее эти уравнения тесно связаны друг с другом. Это не удивительно, если наша (т. е. ньютонова) «грузопружинная» модель может дать разумное приближенное описание волн в сплошных средах. Первым это установил в 1754 г. все тот же неутомимый Лагранж, но окончательной ясности добился лишь Коши (1830 г.).