С уменьшением λ она уменьшается. Заметим, что нет смысла рассматривать длины волн, меньшие 2α. Понять это легко, если вспомнить, что наблюдать мы можем лишь движения частиц, а не мысленно проведенные через их отклонения синусоиды (см. рис. 5.5). С учетом этого ограничения скорость убывает при уменьшении длины волны от значения v до значения (2v/π).
Дисперсионную формулу (5.16) можно получить и из найденного нами раньше выражения для частот стоячих волн в цепочке конечной длины l (см. (5.9)). Для этого заметим, что длина волны в моде с номером М равна λМ = 2(N + 1)α/М = 2l/М, где М = 1, ..., N. Дисперсии не было бы, если бы соответствующие частоты ωМ были пропорциональны М. Как мы знаем, такой пропорциональности для больших М нет. Отсюда и возникает зависимость скорости v от λ при малых длинах волн и больших частотах. Выражая правую часть формулы (5.9) через λМ, получаем соотношение Коши (5.16) между ωМ и λМ.
Плавные синусоидальные кривые, огибающие стоячие волны (5.7), можно получить, заменив в формуле (5.7) nα на х:
Это выражение описывает и стоячие волны в упругом стержне. При этом λМ принимает значения λМ = 2l/M, где M может неограниченно возрастать (М = 1, 2, 3, ...). Значения частот получаются из дисперсионной формулы (5.16), если заменить в ней sin (πα/λ) на πα/λ (вспомните, что в пределе непрерывной среды α → 0):
Аналогичные формулы читатель легко напишет для частот собственных колебаний струн, воздуха в органных трубах и т. д.
Как «услышать» разложение Фурье?
Рояль был весь раскрыт и струны в нем дрожали...
Можно проверить, что функции yM(t, х) в формуле (5.18) удовлетворяют волновому уравнению. Линейные комбинации таких решений также являются решениями. Этот способ решения волнового уравнения открыл еще Даниил Бернулли (метод Бернулли), но лишь Фурье сумел с полной ясностью доказать, что так можно получить самое общее решение и что в этом смысле метод Бернулли равносилен методу Д'Аламбера. Разложение произвольного колебания струны в сумму мод (5.18) и другие подобные разложения (например, разложение бегущей волны на сумму синусоидальных бегущих волн) называются разложениями Фурье. Если периодическая функция f(х) с периодом 2l (т. е. f(х + 2l) = f(х) при любом х) представлена в виде суммы
то легко проверить, что д'аламберова волна (5.10) при g(х) = f(х) представляется в виде суммы мод (5.18), в которой следует положить ωM = 2πv/λM.
Обычно амплитуды АM быстро убывают с ростом номера моды М. Рассмотрим, например, движение струны, оттянутой в средней точке и после этого отпущенной. Так возбуждаются колебания струн щипковых инструментов. При этом «звучат» все моды *), но их амплитуды быстро убывают с ростом частоты. Ухо воспринимает как высоту звука частоту, соответствующую низшей (основной) моде, а примесь высших мод определяет тембр. Звуки, вызванные очень высокими модами, не воспринимаются по двум причинам. Во-первых, их амплитуда мала. Во-вторых, ухо просто «не слышит» частоты больше 20 кГц (это, кстати, объясняет бедность тембра высоких звуков.)
*) Синусоидальные моды часто называют гармониками, что особенно естественно, если речь идет о музыке. Мы называем гармониками только синусоидальные бегущие волны, так что разложение Фурье для стоячей волны — это разложение на нормальные моды, а для бегущей — разложение на гармоники.
Таким образом, о высших модах часто можно просто забыть и с легким сердцем пользоваться разложением Фурье с конечным и даже небольшим числом членов. Разложение бегущей волны на простые гармоники с полным основанием можно рассматривать не просто как математическое изобретение, а как физический процесс, который наблюдается постоянно. Этот процесс называется гармоническим анализом, а проборы, которые его осуществляют, называют гармоническими анализаторами. Они откликаются (резонируют) **) на гармоники, частота которых близка к одной из собственных частот (т. е. к частоте одной из мод). Таким образом можно выяснить частотный состав произвольного колебания. Простейшие анализаторы звука — монохорд или же просто струны любого музыкального инструмента. При достаточной силе звука они начинают дрожать и даже звучать, если среди набора частот (или, как говорят, в спектре частот) падающей на них звуковой волны есть достаточно сильная составляющая, частота которой совпадает с их собственной частотой.