Полная математическая теория электромагнетизма еще не создана. Ее творцу Джеймсу Кларку Максвеллу в 1834 г. было всего три года от роду, и он подрастает в том же самом городе Эдинбурге, где читает лекции по натурфилософии герой нашего рассказа. В это время физика, которая еще не разделилась на теоретическую и экспериментальную, только начинает математизироваться. Так, Фарадей в своих работах не применял даже элементарной алгебры. Хотя Максвелл и скажет позже, что он придерживается «не только идей, но и математических методов Фарадея», это утверждение можно понять лишь в том смысле, что идеи Фарадея Максвелл сумел перевести на язык современной ему математики. В «Трактате об электричестве и магнетизме» он писал:
«Может быть, для науки было счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому у него не было соблазна углубляться в интересные, но чисто математические исследования, которых потребовали бы его открытия, если бы они были представлены в математической форме… Таким образом, он имел возможность идти своим путем и согласовывать свои идеи с полученными фактами, пользуясь естественным, не техническим языком… Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков».
В то же время механика систем точек и твердых тел, как и механика движений жидкостей (гидродинамика), были уже существенно математизированы, т. е. они в значительной степени стали математическими науками. Задачи механики систем точек были полностью сведены к теории обыкновенных дифференциальных уравнений (уравнения Ньютона 1687 г., более общие уравнения Лагранжа 1788 г.), а задачи гидромеханики к теории так называемых дифференциальных уравнений с частными производными (уравнения Эйлера 1755 г., уравнения Навье 1823 г.). Это не значит, что все задачи были решены. Наоборот, в этих науках были впоследствии сделаны глубокие и важные открытия, поток которых не иссякает и в наши дни. Просто механика и гидромеханика достигли того уровня зрелости, когда их основные физические принципы были отчетливо сформулированы и переведены на язык математики.
Естественно, что эти глубоко разработанные науки служили основой для построения теорий новых физических явлений. Понять явление для ученого прошлого века значило объяснить его на языке законов механики. Образцом последовательного построения научной теории считалась небесная механика. Итоги ее развития были подведены Пьером Симоном Лапласом (1749—1827) в монументальном пятитомном «Трактате о небесной механике», вышедшем в свет в первой четверти века. Эта работа, в которой были собраны и обобщены достижения гигантов ХVIII в. Бернулли, Эйлера, Д'Аламбера, Лагранжа и самого Лапласа, оказала глубокое влияние на формирование «механического миропонимания» в ХIХ в.
Заметим, что в том же 1834 г. в стройную картину классической механики Ньютона и Лагранжа был добавлен завершающий мазок — знаменитый ирландский математик Уильям Роуэн Гамильтон (1805—1865) придал уравнениям механики так называемый канонический вид (согласно словарю С. И. Ожегова «канонический» означает «принятый за образец, твердо установленный, соответствующий канону») и открыл аналогию между оптикой и механикой. Каноническим уравнениям Гамильтона суждено было сыграть выдающуюся роль в конце века при создании статистической механики, а оптико-механическая аналогия, установившая связь между распространением волн и движением частиц, была использована в 20-е годы нашего века творцами квантовой теории. Идеи Гамильтона, который первым глубоко проанализировал понятие волн и частиц и связи между ними, сыграли немалую роль и в теории солитонов.
Развитие механики и гидромеханики, так же как и теории деформаций упругих тел (теории упругости), подстегивалось потребностями развивающейся техники. Дж. К. Максвелл много занимался также и теорией упругости, теорией устойчивости движения с приложениями к работе регуляторов, строительной механикой. Более того, разрабатывая свою электромагнитную теорию, он постоянно прибегал к наглядным моделям: «…я сохраняю надежду при внимательном изучении свойств упругих тел и вязких жидкостей найти такой метод, который позволил бы дать и для электрического состояния некоторый механический образ… (ср. с работой: Уильям Томсон «О механичееком представлении электрических, магнитных и гальванических сил», 1847 г.)».