Выбрать главу

Для приведения электрона молекулы хлорофилла в возбужденное состояние требуется определенная порция энергии. Не все солнечные лучи обладают необходимой для свершения фотосинтетической реакции дозой энергии. Наибольшим эффектом в этом отношении обладают лучи красного и фиолетового спектров. Но как раз эти-то лучи быстрее остальных гаснут в толще воды. Они не могут «пробить» многометровый слой воды. В связи с этим в процессе эволюции у глубоководных водорослей выработались особые пигменты, способные поглощать солнечные лучи, проникающие довольно глубоко в толщу воды. У многих представителей морской растительности появились дополнительные пигменты для усвоения лучей/ с малой энергией. Так, у бурых водорослей к хлорофиллу добавился пигмент фукоксантин, а у красных — фикоэритрин. Эти дополнительные включения способны утилизировать небольшие дозы энергии. солнечного спектра, используя их для процессов фотосинтеза.

Интенсивностью поглощения солнечных лучей, обладающих различной порцией энергии, объясняется ярусность расположения морской растительности. На мелководье, как правило, преобладают зеленые водоросли, глубже — бурые, а еще глубже — красные. Правда, это правило не всегда соблюдается. Так, красные водоросли, выросшие на мелководье, где имеется возможность усваивать лучи с большой энергией (в частности, красные), теряют свой первоначальный пигмент и приобретают зеленую окраску. Если же это растение в силу каких-либо обстоятельств вновь оказывается на большой глубине, потерянный пигмент полностью восстанавливается. Аналогичные явления могут наблюдаться и у других представителей морской флоры. Большую роль в процессах фотосинтеза, кроме хлорофилла, играет каротин (провитамин А) — это выяснилось в последние годы. Сейчас с полной достоверностью установлено, что продуктами фотосинтеза могут быть не только углеводы, как это раньше считалось, но и белки, жиры и различные витамины.

Значение фотосинтеза для жизни на Земле огромно. «Растительный мир, — пишет немецкий ученый Майер,— это склад, в котором летящие солнечные лучи задерживаются и искусно накапливаются для использования их в дальнейшем. От этой предусмотрительности природы зависит само существование человека». Суммарно процесс фотосинтеза можно выразить следующей реакцией:

Свет

6 СО2 + 6 Н2О → С6Н12О6 + 6 О2.

Они были первыми

Появившиеся первые растения — морские сине-зеленые водоросли — дали дорогу всему многообразию растительного мира. Прошли тысячелетия. Древние моря стали постепенно мелеть, увеличивалась площадь суши. Некоторые виды водорослей изменили условия жизни коренным образом, перебравшись на берег. И эти древнейшие растения сделались родоначальниками «сухопутных» мхов, лишайников, папоротникообразных, а в дальнейшем и высших растений.

Впервые появившиеся низшие растения — водоросли — произвели настоящую революцию на планете. Интенсивно поглощая углекислый газ, водоросли постепенно заполняли гидросферу и атмосферу живительным кислородом. Миллиарды лет назад атмосфера Земли, как это достоверно установлено, не имела кислорода. И первые простейшие живые существа усваивали другие компоненты, в частности азот и углекислый газ. К этим существам относились и сине-зеленые водоросли. Вот что пишет о них известный советский микробиолог М. В. Гусев: «Можно высказать предположение, что именно СЗВ (сине-зеленые водоросли. — В. К.) и подобные им организмы, появившиеся на Земле тогда, когда кислорода в атмосфере еще не было, начали выделять его. Таким путем они заставили другие живые существа искать средства защиты от этого мощного яда. И прошло, вероятно, еще немало времени, пока, испробуя различные механизмы защиты, жизнь нашла идеальный способ и превратила нейтрализацию яда в энергетически выгодный для себя процесс». И это имело громадное значение для развития всего многообразия растительного, а также и животного мира.

Через миллионы лет появились новые более сложные по строению водоросли. Изучая разнообразные простейшие растения, можно заметить постепенный переход от одноклеточного строения к многоклеточному. Это привело в дальнейшем к появлению и дифференциации половых клеток. Начиная от сине-зеленых водорослей, жизнь постоянно усложнялась, неуклонно поднимаясь на следующие эволюционные этажи, что в конечном итоге привело к дифференциации как растительного, так и животного мира. Итак, возникновение жизни можно представить как сложный эволюционный процесс с революционными скачками от одного звена к другому, более сложному. Вот эта схематическая цепочка: химические неорганические соединения → органические вещества → простые протамины и сложные белки → одноклеточные и далее многоклеточные низшие растительные организмы → растительный и животный мир во всем своем многообразии.