Выбрать главу

A similar scenario played out in Korea, by the way, where Korea Telecom, traditionally a loyal member of the AT&T family, turned FLAG down at first. FLAG approached a competitor named Dacom, and, faced with that threat, Korea Telecom changed its mind and decided to break with AT&T and land FLAG after all. But in Japan, KDD, perhaps displaying more loyalty than was good for it, held the line. Miura became FLAG's Japanese landing station by default - a huge coup for IDC, which could now route calls to virtually anywhere in the world directly from its station.

All of this happened prior to a major FLAG meeting in Singapore in 1992, which those familiar with the project regard as having been a turning point. At this meeting it became clear that FLAG was a serious endeavor, that it really was going to happen. Not long afterward, AT&T decided to adopt an "if you can't beat 'em, join 'em'' strategy toward FLAG, which eventually led to it and KDD Submarine Cable Systems getting the contract to build FLAG's cable and repeaters. (AT&T-SSI is supplying 64 percent of the cable and 59 percent of the repeaters, and KDD-SCS is supplying the rest.) This was a big piece of good news for KDD-SCS, the competitive-minded manufacturer, but it put KDD the poky long-distance company in the awkward, perhaps even absurd situation of supplying the hardware for a project that it had originally opposed and that would end up being a cash cow for its toughest competitor.

So KDD changed its mind and began trying to get in on FLAG. Since FLAG was already coming ashore at a station owned by IDC, this meant creating a second landing in Japan, at Ninomiya. In no other country would FLAG have two landings controlled by two different companies. For arcane contractual reasons, this meant that all of the other 50-odd carriers involved in FLAG would have to give unanimous consent to the arrangement, which meant in practice that IDC had veto power. At a ceremony opening a new KDD-SCS factory on Kyøushøu, executives from KDD and IDC met to discuss the idea. IDC agreed to let KDD in, in exchange for what people on both sides agree were surprisingly reasonable conditions.

At first blush it might seem as though IDC was guilty of valuing harmony and cooperation over the preservation of shareholder value - a common charge leveled against Japanese corporations by grasping and peevish American investors. Perhaps there was some element of this, but the fact is that IDC did have good reasons for wanting FLAG connected to KDD's network. KDD's Ninomiya station is scheduled to be the landing site for TPC-5, a megaproject of the same order of magnitude as FLAG: 25,000 kilometers of third-generation optical fiber cable swinging in a vast loop around the Pacific, connecting Japan with the West Coast of the US. With both FLAG and TPC-5 literally coming into the same room at Ninomiya, it would be possible to build a cross-connect between the two, effectively extending FLAG's reach across the Pacific. This would add a great deal of value to FLAG and hence would be good for IDC.

In any case, the deal fell through because of a strong anti-FLAG faction within KDD that could not tolerate the notion of giving any concessions whatever to IDC. There it stalemated until FLAG managed to cut a deal with China Telecom to run a full-bore 10.6 Gbps spur straight into Shanghai. While China has other undersea cable connections, they are tiny compared with FLAG, which is now set to be the first big cable, as well as the first modern Internet connection, into China.

At this point it became obvious that KDD absolutely had to get in on the FLAG action no matter what the cost, and so it returned to the bargaining table - but this time, IDC, sensing that it had an overpoweringly strong hand, wanted much tougher conditions. Eventually, though, the deal was made, and now jumpsuited workers are preparing rooms at both Ninomiya and Miura to receive the new equipment racks, much like expectant parents wallpapering the nursery.= At Ninomiya, an immense cross-connect will be built between FLAG and TPC-5, and Miura will house a cross-connect between FLAG and the smaller NPC cable.

The two companies will end up on an equal footing as far as FLAG is concerned, but the crucial strategic misstep has already been made by KDD: by letting IDC be the first to land FLAG, it has given its rival a chance to acquire a great deal of experience in the business. It is not unlike the situation that now exists between AT&T, which used to be the only company big and experienced enough to put together a major international cable, and Nynex, which has now managed to get its foot in that particular door and is rapidly gaining the experience and contacts needed to compete with AT&T in the future.

Hazards

Dr. Wildman Whitehouse and his 5-foot-long induction coils were the first hazard to destroy a submarine cable but hardly the last. It sometimes seems as though every force of nature, every flaw in the human character, and every biological organism on the planet is engaged in a competition to see which can sever the most cables. The Museum of Submarine Telegraphy in Porthcurno, England, has a display of wrecked cables bracketed to a slab of wood. Each is labeled with its cause of failure, some of which sound dramatic, some cryptic, some both: trawler maul, spewed core, intermittent disconnection, strained core, teredo worms, crab's nest, perished core, fish bite, even "spliced by Italians." The teredo worm is like a science fiction creature, a bivalve with a rasp-edged shell that it uses like a buzz saw to cut through wood - or through submarine cables. Cable companies learned the hard way, early on, that it likes to eat gutta-percha, and subsequent cables received a helical wrapping of copper tape to stop it.

A modern cable needn't be severed to stop working. More frequently, a fault in the insulation will allow seawater to leak in and reach the copper conductor that carries power to the repeaters. The optical fibers are fine, but the repeater stops working because its power is leaking into the ocean. The interaction of electricity, seawater, and other chemical elements present in the cable can produce hydrogen gas that forces its way down the cable and chemically attacks the fiber or delicate components in the repeaters.

Cable failure can be caused by any number of errors in installation or route selection. Currents, such as those found before the mouths of rivers, are avoided. If the bottom is hard, currents will chafe the cable against it - and currents and hard bottoms frequently go together because currents tend to scour sediments away from the rock. If the cable is laid with insufficient slack, it may become suspended between two ridges, and as the suspended part rocks back and forth, the ridges eventually wear through the insulation. Sand waves move across the bottom of the ocean like dunes across the desert; these can surface a cable, where it may be bruised by passing ships. Anchors are a perennial problem that gets much worse during typhoons, because an anchor that has dropped well away from a cable may be dragged across it as the ship is pushed around by the wind.

In 1870, a new cable was laid between England and France, and Napoleon III used it to send a congratulatory message to Queen Victoria. Hours later, a French fisherman hauled the cable up into his boat, identified it as either the tail of a sea monster or a new species of gold-bearing seaweed, and cut off a chunk to take home. Thus was inaugurated an almost incredibly hostile relationship between the cable industry and fishermen. Almost anyone in the cable business will be glad, even eager, to tell you that since 1870 the intelligence and civic responsibility of fisherman have only degraded. Fishermen, for their part, tend to see everyone in the cable business as hard-hearted bluebloods out to screw the common man.

Most of the fishing-related damage is caused by trawlers, which tow big sacklike nets behind them. Trawlers seem designed for the purpose of damaging submarine cables. Various types of hardware are attached to the nets. In some cases, these are otter boards, which act something like rudders to push the net's mouth open. When bottom fish such as halibut are the target, a massive bar is placed across the front of the net with heavy tickler chains dangling from it; these flail against the bottom, stirring up the fish so they will rise up into the maw of the net.