Мы с Тандзи обучали обезьян отвечать на такую же последовательность событий. Животные начинали с того, что точно устанавливали рукоятку и удерживали ее в неподвижности в течение нескольких секунд. Во время этого короткого периода выход сигналов из их моторной коры к мышцам руки регулировался отрицательной обратной связью по замкнутой петле. Затем включалась цветная лампа. Ее цвет показывал обезьяне, как реагировать на предстоящее перемещение рукоятки извне. Если свет был красный, обезьяна должна была тянуть рукоятку назад, если зеленый - толкать вперед. Обезьяны получали вознаграждение за правильные ответы на движения рукояток после получения обоих сигналов. Подготовка к реакции на эти сигналы занимала около 200 миллисекунд.
Регистрируя импульсацию нейронов моторной коры, мы отметили, что после подготовки к движению животному нужно было всего 40 миллисекунд, чтобы правильно реагировать на движения рукоятки. В коротком интервале, следующем за движением, корковый контроль резко переходил от обратной связи по замкнутой петле (которая рефлекторно обеспечивает устойчивость позы) к связи по открытой петле, которая была нужна, чтобы совершить запрограммированное движение.
Итак, соматосенсорная область коры больших полушарий выполняет функцию передачи сигналов, контролирующих выходную активность моторной коры по принципу замкнутой петли. Но соматосенсорная область не посылает тех сигналов, которые лежат в основе запрограммированных движений, осуществляемых по принципу открытой петли, несмотря на (а не вследствие) рефлекторные эффекты соматосенсорной входной активности. Сигналы, связанные с запрограммированными движениями, приходят в двигательную кору из подкорковых структур, в особенности из мозжечка через таламус. П. Стрик (P. Strick) из Национальных институтов здравоохранения поставил опыты, которые показали, что в центрально запрограммированном управлении по открытой петле участвует путь, идущий от мозжечка через таламус в кору. Проводя опыты в основном по тому же плану, что и мы с Тандзи, Стрик регистрировал активность отдельных нейронов в определенных структурах мозжечка.
Он обучал своих обезьян двигать рукой в ответ на поданный знак, состоявший в перемещении руки посредством производимого извне передвижения рукоятки, которую держала обезьяна. Стрик обнаружил, что если предварительно у обезьян при помощи системы красных и зеленых сигналов было запрограммировано перемещение рукоятки в том или другом направлении, то эта программа оказывала сильное влияние па реакции определенных, так называемых зубчатых нейронов мозжечка: эти нейроны разряжались в пределах 30 миллисекунд после того, как был подан знак в виде перемещения руки. Тем самым у активности зубчатого нейрона было 10 миллисекунд на то, чтобы пройти через таламус и вызвать, центрально запрограммированную активность моторной коры (проявляющуюся через 40 миллисекунд после подачи знака).
Проводящие пути между некоторыми областями коры больших полушарий и определенными подкорковыми структурами показаны на схеме продольного разреза большого мозга обезьяны. Тонкими стрелками обозначены входы в базальные ганглии (структуры внутри черных границ), которые проводят разнообразную информацию от коры больших полушарий. Один из компонентов, стриатум, является главным связующим звеном между ассоциативными областями коры и моторной областью. Путь, выходящий из стриатума, проходит к разделенному на две части бледному шару (толстая стрелка); это образование в свою очередь посылает связи в другую подкорковую структуру - таламус, в особенности к двум его ядрам: ventralis lateralis и ventralis anterior (толстая и менее толстая стрелки). Пути, выходящие из таламуса, идут главным образом в премоторную область коры (толстая стрелка); дополнительные пути (менее толстая стрелка) направляются в моторную кору, откуда сигналы идут к мотонейронам спинного мозга (пунктирная стрелка). Подкорковые входы играют важную роль в центральном программировании движений.
Факты, полученные Стриком, согласуются с данными У. Тэтча мл. (W. Thatch, Jr.) из Вашингтонского университета. Работая в Национальном институте охраны психического здоровья, Тэтч показал, что импульсация нейронов мозжечка намного опережала мышечную активность у обезьяны, обученной отвечать на световой стимул. Роль сигналов, идущих от мозжечка, в генерации активности моторной коры была также экспериментально показана В. Бруксом (V. Brooks) с сотрудниками из Университета Западного Онтарио. Они искусственно понижали температуру мозжечка у обезьян, а затем давали ей вернуться к норме. Активность нейронов двигательной коры измерялась до, во время и после охлаждения мозжечка. Было установлено, что во время охлаждения импульсация нейронов моторной коры и соответствующее запрограммированное движение запаздывали.
Кроме проведения сигналов от мозжечка в моторную кору таламус передает сигналы еще от одной подкорковой структуры, а именно от большой совокупности клеточных групп, объединяемых общим названием базальных ганглиев. Во время своей работы в Национальном институте охраны психического здоровья М. Де-Лонг (М. DeLong) из Университета Джонса Гопкинса показал, что клетки базальных ганглиев разряжаются задолго до произвольных движений, совершаемых животным в ответ на сигналы, Этот факт согласуется с результатами наблюдений, сделанных в неврологических отделениях; согласно этим наблюдениям, базальные ганглии имеют решающее значение для самых ранних стадий инициации движения - стадий, когда в результате еще не разгаданных процессов абстрактная мысль переводится в конкретный двигательный акт.
Рефлексы и произвольные движения не противоположны друг другу. Это признал еще сто лет назад Джексон, когда писал, что произвольные движения подчиняются законам, управляющим рефлекторными актами. Однако если произвольным движениям нельзя дать определение путем исключения, т. е. определить их как нечто такое, что не является рефлексом, то в таком случае как же их определить? Самое сжатое из известных мне определений дал шведский нейрофизиолог Р. Гранит (R. Granit) в своей недавно опубликованной книге "Целенаправленный мозг": "Произвольным в произвольном движении является его цель". С такой точки зрения произвольные свойства моторного акта надо рассматривать в аспекте цели совершаемого действия. В то же время действительные события, лежащие в основе достижения цели, строятся из разнообразных рефлекторных процессов.