Выбрать главу

Дальний конец аксона находится далеко от ближайшего пункта синтеза белка (не считая митохондрий внутри аксона), и это обстоятельство может налагать ограничения на скорость, с которой в нем происходят некоторые биохимические изменения. Вероятно, существуют одни типы нейронных цепей, с которыми организм справляется сравнительно легко, и другие, которые для него непосильны. Насколько мы знаем, генам высшего животного может быть трудно придавать схеме нейронных связей большую точность, особенно если в схеме участвует очень много клеток. Например, точного распределения связей, необходимого для правильного стереоскопического зрения, трудно достичь без того благотворного влияния, какое оказывает некоторый контакт с реальным внешним миром, может быть, потому, что системы, связанные с двумя глазами, вероятно, не могут быть построены с требуемой точностью.

Возможны и другие ограничения. Как предположил много лет назад Г. Дэйл, нейрону, по-видимому, трудно так устроить свои дела, чтобы одна веточка его аксонного дерева выделяла один медиатор, а другая - другой. Этот принцип, возможно, лежит в основе случая, описанного Э. Кэнделом в настоящем выпуске (см. статью "Малые системы нейронов"), когда медиатор, продуцируемый одной и той же клеткой, возбуждал одни клетки, тормозил другие и оказывал смешанное влияние на клетки третьего типа.

Третье ограничительное условие налагается математикой, в частности теорией связи. На первый взгляд может показаться, что некоторые такие результаты противоречат ожиданиям. При известных обстоятельствах распределение, или общая структура (pattern), прекрасно воссоздается на основе небольшой выборки, если производить ее через правильные промежутки. Информация может быть заложена в память в распределенной форме подобно голограмме таким образом, что извлечение части хранимой информации не устраняет какой-либо части картины, хотя снижает до некоторой степени качество всей картины.

Возникает искушение ввести четвертое ограничительное условие, но опыт показал, что оно ненадежно. Это условие налагается эволюцией. Несомненно, все организмы и их компоненты образовались в результате долгого эволюционного процесса, и это обстоятельство никогда нельзя забывать. Однако неразумно было бы угверждать (разве только в самых общих выражениях), что эволюция не могла сделать того-то или должна была сделать то-то. Биолог должен руководствоваться хорошим рабочим правилом, что эволюция гораздо умнее его. Это не значит, что сравнительные биологические исследования не могут показать, что определенная структура часто связана с определенной функцией. Таксономическое сопоставление результатов эволюции может привести к полезным предположениям, но такие предположения всегда должны быть подтверждены прямым экспериментом.

Как бы то ни было, но первые три ограничительных условия мы понимаем лишь частично. Процесс разложения окружающего нас мира на его существенные признаки не всегда протекает прямолинейно. Многие важные вопросы эмбриологии еще не получили ответа. Теория информации - сравнительно новая отрасль знания. Поэтому, хотя и есть возможность получать какие-то наводящие указания, рассматривая все три условия, исследователь редко встречается с таким обилием ограничений, что это практически позволило бы сделать выбор между теориями. Существует так много способов, какими наш мозг мог бы перерабатывать информацию, что без существенной помощи прямых экспериментальных фактов (а они обычно малочисленны) мы вряд ли сделаем правильный выбор.

Существуют ли какие-то идеи, которых следует избегать? Я думаю, что одна, по крайней мере, есть - это идея гомункулуса. Недавно я пытался разъяснить одной умной женщине проблему, которая состоит в том, как понять, что мы вообще воспринимаем что бы то ни было, но мне это никак не удавалось. Она не могла понять, в чем тут проблема. Наконец, в отчаянии я спросил ее, как она сама считает, каким образом она видит мир. Женщина ответила, что, вероятно, где-то в голове у нее есть что-то вроде маленького телевизора. "А кто же в таком случае, - спросил я, - смотрит на экран?" Тут она сразу же поняла, в чем проблема.

Большинство нейробиологов считает, что в мозгу нет гомункулуса. К несчастью, легче констатировать ошибку, чем не впасть в нее. Это происходит потому, что мы несомненно питаем иллюзию существования гомункулуса - нашей личности. Вероятно, сила и прочность этой иллюзии имеют свои основания. Возможно, она отражает некоторые аспекты общего управления мозгом, но какова природа этого управления, мы еще не узнали.

Следовало бы избегать еще одной общей ошибки. Ее можно было бы назвать "ошибкой премудрого нейрона". Представим себе нейрон, который посылает сигнал на некоторое расстояние по своему аксону.

Что этот сигнал сообщает воспринимающему синапсу? Сигнал, разумеется, закодирован частотой нервных импульсов, но что означает его сообщение? Легко усвоить привычку считать, что оно содержит в себе больше, чем это есть в действительности.

Возьмем, например, нейрон в зрительной системе, который считается цветочувствительным. Предположим, что лучше всего он разряжается при стимуляции пятнышком желтого света. Мы склонны думать, будто он сообщает нам, что свет в этой точке желтый. Однако на самом деле это не так, потому что большинство рецепторов цвета имеют широкую кривую ответов и генерируют импульсы - во всяком случае, в известной степени - в довольно широком диапазоне длин волн. Поэтому данная частота импульсации может быть вызвана и слабым желтым и сильным красным светом. Кроме того, на импульсацию данного нейрона могли повлиять объем движения светового пятна и его точные форма и размеры. Короче говоря, множество разных, хотя и связанных между собой входов вызовут импульсацию одной и той же частоты.

Поскольку относящийся к данному стимулу сенсорный вход в нейрон обладает многими признаками, а выход (грубо говоря) только один, то информация, передаваемая одним нейроном, обязательно неоднозначна. Однако следует иметь в виду, что мы можем, кроме того, извлечь информацию, сравнивая импульсацию одного нейрона с импульсацией другого или нескольких других нейронов. Посредством одного только типа рецепторов (палочек) мы вовсе не можем воспринять цвет, а видим только оттенки серого. Чтобы свет в нашем восприятии был окрашен, нужно не меньше двух типов рецепторов, причем у каждого из них кривая ответов на разные длины волн отличается от кривой для другого нейрона. Опытами показано, что это именно так: мы можем воспринимать цвет палочками при участии хотя бы одного типа колбочек.