Ранее описано резкое увеличение выхода кальция из изолированной ткани мозга цыпленка при действии модулированных радиочастотных ЭМП. Эти исследования показали, что ответ наблюдался в узкой полосе низкочастотных модуляций (6—25 Гц) и, что характерно, отсутствовал при действии немодулированной несущей волны (147 МГц).
Исследования различных участков изолированной коры больших полушарий мозга кошки показали значительное снижение выхода кальция при действии ЭП частотой 6 и 16 Гц с градиентом 56 В/м. Незначительные тенденции к снижению выхода наблюдали также в поле данной напряженности при частотах 1,32 и 75 Гц. Никаких существенных эффектов не наблюдали не только в поле 10 В/м с частотой 6,16 и 32 Гц, но и в поле 100 В/м с частотой 6 и 16 Гц. Следовательно, мы имеем «резонансную» кривую с максимальной чувствительностью ткани в области 6 и 16 Гц и с амплитудным окном между 56 и 100 В/м.
Не было обнаружено разницы между различными корковыми участками, которые относились к преимущественно сенсорным, двигательным или ассоциативным областям.
Данные по выходу кальция при действии низкочастотных ЭМП на мозговую ткань цыпленка и кошки могут быть объединены в некоторой последовательности. Начальные изменения происходят на продольной оси мембраны, включая, возможно, макромолекулярные конформационные изменения, зависящие от изменений связей кальция с полианионными гликопротеинами. Слабое изменение в одной точке может вызвать макромолекулярные конформационные изменения на значительном расстоянии вдоль мембраны.
Для низкочастотных и радиочастотных ЭМП обнаружено существование минимальной чувствительности к полям «биологической» частоты, но результаты четко показывают, что способ взаимодействия зависит от амплитуды поля. Возможное основание для этой амплитудной избирательности может лежать в способе связывания кальция с цепями биополимеров.
Если, как предполагали раньше, кооперативная динамика связывания кальция на возбудимых мембранах определяет предельный цикл поведения, то субстратно-кальциевое равновесие будет колебаться с фиксированной частотой и амплитудой.
Таким образом, слабое нарушение любого параметра может легко разрушить электрохимическое равновесие. Однако имеющиеся результаты не могут указать на дипольный момент или на другую молекулярную чувствительность в таком узком частотном диапазоне. Существованием амплитудного окна для этих прямых взаимодействий внешних низкочастотных ЭП с тканью мозга можно объяснить описанные ранее поведенческие и нейрофизиологические изменения.
Спонтанные циркадные ритмы у человека и птиц, живущих в экранированных камерах, становились короче при наложении электрического поля 10 Гц прямоугольной волны с градиентом 2,5 В/м в воздухе. Оценки интервалов времени (5 с) у обезьян ускоряются на 10% при наличии 7 Гц, 10 В/м синусоидального электрического поля. Дальнейшие исследования расширили эти представления, показав максимальную чувствительность в области 7 Гц с прогрессивным увеличением порогов к 45 и 75 Гц.
При исследовании распределения РНК в рецепторе рака микрофотометрическим методом выявились изменения, особенно резко выраженные в зонах отхождения дендритов и аксона. К 30-й минуте действия ПМП в области отхождения дендритов наблюдается уменьшение плотности, а в области отхождения аксона, наоборот, увеличение плотности РНК. После снятия ПМП через 30 мин наступает некоторое восстановление исходной картины. Фотометрирование тела нейрона по поперечному диаметру выявило увеличение плотности РНК к 30-й мин действия ПМП в перинуклеарной области, сглаживающееся после прекращения действия ПМП.
Результаты этих опытов говорят о том, что реакции нервной ткани на ПМП могут иметь в основе изменения свойств генерации импульсов нейронами. Нарушение функциональной деятельности нейронов, по-видимому, является отражением изменения характера их внутриклеточного метаболизма, которое наблюдали в данном случае по показателям динамики РНК, имевшим место при действии ПМП.
Влияние на метаболизм НС других диапазонов ЭМП интенсивно исследуют харьковские гигиенисты под руководством Г. И. Евтушенко. Были отмечены изменения разных сторон обмена НС при воздействии ИМП и при воздействии поля УВЧ. В последнем случае нужно отметить большое количество обследованных животных (500 крыс), широкий набор биохимических методик, изучение раздельного воздействия электрической и магнитной компонент ЭМП, вариации в способах воздействия (однократный, многократный и хронический) и в его интенсивности. Интересно, что при воздействии ЭП наиболее чувствительным показателем оказалось содержание лактата в мозгу и крови, а для МП — содержание преформированного аммиака и повышение содержания амидного азота в белках мозга крыс. Эти результаты дают дополнительный материал для выяснения специфичности воздействия магнитных и электрических полей. В будущем желательно сопоставить эти оригинальные биохимические данные с результатами физиологических и морфологических исследований.