Одним из тех, кто считал, что Хобсон уперся в глухую стену, что исследование его тупиковое, был Дэвид Хьюбел, гарвардский нейрофизиолог, который также фаршировал кошек микроэлектродами — но он изучал зрительную зону коры, пытаясь понять, как мозг видит. За это исследование, объясняющее, как посредством связи между сетчаткой глаза и зрительной корой головного мозга формируются визуальные образы, Хьюбел и его коллега шведский ученый Торстен Визель в 1981 году получили Нобелевскую премию. «Хьюбел тоже начинал как исследователь сна, но, поскольку он придерживался широко распространенного тогда мнения, будто во сне нейронная активность прекращается, он переключился на исследования зрительного восприятия, — вспоминает Хобсон. — Он был убежден, что если мы вставим электроды в ствол мозга, то не услышим ничего, кроме молчания. А все оказалось как раз наоборот».
В 1977 году Хобсон и Маккарли опубликовали результаты своих открытий. Это было довольно противоречивое нейрофизиологическое объяснение природы сновидений, которое, однако, решительным образом выбивало почву из-под фрейдистской теории и большинства других психологических методов толкования содержания снов. Основываясь на увиденных ими моделях возбуждения клеток мозга, Хобсон и Маккарли пришли к выводу, что фаза быстрого сна наступала, когда нейроны ствола головного мозга приводили в действие переключатель, который полностью изменял в мозгу баланс нейромодуляторов — этих чрезвычайно важных химических веществ, выступающих в роли посланников от одного нейрона к другому и вызывающих химические изменения внутри нейрона-рецептора, активируя или «выключая» целые отделы мозга.
Рис. 2.1. Во включении той стадии сна, когда мы видим самые яркие сновидения, участвует варолиев мост, находящийся в основании ствола головного мозга. За логическое мышление отвечает префронтальная кора; первичная зрительная кора принимает сигналы от сетчатки в период бодрствования, а двигательная зона коры головного мозга превращает намерения в реальные движения, такие как бег или бросание мяча.
Ассоциативные зоны коры связывают воедино информацию, поступающую от органов чувств, и память ради создания зрительных образов, которые мы видим и когда бодрствуем, и в своих сновидениях.
Когда мы бодрствуем, в мозгу циркулируют два основных нейромодулятора, без которых активное, бодрствующее сознание невозможно, — это норадреналин (или норэпинефрин), который помогает направлять и удерживать внимание, и серотонин. Хотя серотонин сейчас, возможно, более известен как регулятор настроения (прозак и другие антидепрессанты повышают содержание серотонина), он также играет важную роль в таких процессах, как суждение, обучение и запоминание.
Когда мы только засыпаем и общая активность мозга понижается, эти два вещества прекращают циркуляцию, и их заменяет другой нейромодулятор, ацетилхолин, который возбуждает зрительные, двигательные и эмоциональные центры мозга и передает сигналы, вызывающие быстрый сон и зрительные образы в сновидениях.
Мозг, пропитанный ацетилхолином, действует по совершенно иным правилам, чем мозг бодрствующий: двигательные импульсы блокируются, и мы практически парализованы — во сне мы не можем, как ни стараемся, повернуть руль мчащегося с горы автомобиля или нажать на тормоза.
Рис. 2.2. Структуры головного мозга или его участки, которые играют
важную роль в создании сновидений. Таламус — это входной канал сенсорной информации, который помогает управлять вниманием; миндалевидное тело — ядро нашей эмоциональной системы, отвечающее за реакцию борьбы или бегства; и, наконец, гиппокамп играет важнейшую роль в формировании памяти. Теменная доля специализируется на ориентации в пространстве и на формировании психических образов, а некоторые данные позволяют предполагать, что фронтальная часть поясной извилины — именно то место, где коренится наше самосознание.