Таким образом, теория чисел может разрабатываться в этом направлении. Тем не менее представление о единице скрывает основательную путаницу между отдельным числом и постоянным количеством, и это становится очевидным, как только пифагорейская теория прикладывается к геометрии. В чем заключаются трудности, мы увидим, познакомившись с критикой Зенона.
Другим главным наследием Пифагоровой математики является теория идей, которая была принята и развита дальше Сократом. Она тоже была подвергнута критике элеатами, если только можно положиться на свидетельство Платона. Мы уже намекали на математические корни этой теории. Возьмем, например, теорему Пифагора. Не стоит чертить чрезвычайно точно прямоугольный треугольник и квадраты по его сторонам и затем измерять их площадь. Как бы точен чертеж ни был, он не будет абсолютно точным, да и не может быть. Не эти рисунки дали доказательство этой теоремы. Для этого нам потребовался бы совершенный чертеж такого рода, который может быть представлен, но не начерчен. От любого чертежа требуется, чтобы он был более или менее правдивым отображением образа, созданного в воображении человека. Это суть теории идей, которая была хорошо известной частью учения более поздних пифагорейцев.
Мы видели, как Пифагор развивал принцип гармонии, основываясь на представлении о натянутых струнах. На это же представление опираются медицинские теории, которые рассматривают здоровье как некоторый вид равновесия между противоположностями. Последующие пифагорейцы пошли еще дальше и применили идею гармонии к душе. Согласно такому взгляду, душа это настройка тела и функция хорошо организованного состояния тела. Когда организация тела нарушается, тело разрушается и то же происходит с душой. Мы можем представить себе душу, как натянутую струну музыкального инструмента, а тело - как конструкцию, в пределах которой струна натянута. Если эта конструкция разрушена, струна становится ненатянутой и теряет свою настройку. Этот взгляд совершенно отличается от ранних пифагорейских представлений на эту тему. Пифагор верил в переселение душ, в то время как по этому, более позднему, взгляду, души умирают так же, как и тела.
Совершенный треугольник не может быть начерчен, он может быть только
представлен в уме.
Схема бесконечной делимости; здесь не может быть предела делимости.
В астрономии поздние пифагорейцы развивали очень смелую гипотезу. Согласно ей, центром мира является не Земля, а центральный огонь. Земля это планета, вращающаяся вокруг этого огня, но он невидим для нас, потому что наша сторона Земли всегда отвернута от центра. Солнце также считалось планетой, получающей свой свет от центрального огня. Это был большой шаг вперед к гелиоцентрической гипотезе, позднее выдвинутой Аристархом. Но в той форме, в какой пифагорейцы развивали свою теорию, оставалось так много неясностей, что Аристотель по-прежнему рассматривал Землю плоской. Вследствие его большего авторитета в других вопросах этот взгляд взамен верного стал превалировать в более позднее время, когда источники были забыты.
Что касается теорий о природе вещей, пифагорейцы признавали одну черту, которая была не замечена или не понята более ранними мыслителями. Это - представление о пустоте. Без него удовлетворительное объяснение движения невозможно. Здесь также учение Аристотеля основывалось на представлении, что природа не терпит пустоты. У атомистов же мы должны искать верное направление развития физической теории.
Тем временем пифагорейская школа старалась приспособить к своей теории идеи Эмпедокла. Их математические взгляды, конечно, не позволили им принять эти идеи как окончательные. Вместо этого они выработали компромиссный вариант, который заложил основы математической теории строения материи. Элементы теперь считались состоящими из частиц, имеющих форму обычного физического тела. Эта теория далее была развита Платоном в "Тимее". Само слово "элемент", по-видимому, было изобретено этими более поздними пифагорейскими мыслителями.
Ни одна из материалистических попыток преодолеть критику Парменида по этому вопросу не может считаться вполне удовлетворительной. Несмотря на слабости самой элейской теории, остается фактом, что простое увеличение числа фундаментальных субстанций не может быть решением проблемы. Это было убедительно продемонстрировано рядом доказательств, выдвинутых последователями Парменида. Зенон родился около 490 г. до нашей эры Кроме факта, что он интересовался политическими делами, мы знаем о нем одну важную вещь: он и Парменид встретили Сократа в Афинах. Это сообщает Платон, и у нас нет причин не верить ему.
Элейское учение, как было показано ранее, приводит к поразительным заключениям. По этой причине было предпринято много попыток залатать материалистическое учение. Зенон пытался показать, что если элейское учение и не является совершенным в общем смысле, то противоположные теории, ставящие своей целью преодолеть этот тупик, привели к еще более странным выводам. Таким образом, вместо того чтобы прямо защищать Парменида, он бьет противника на его территории. Соглашаясь с допущением оппонента, он показывает путем дедуктивных доказательств, что оно приводит к невозможным следствиям. Следовательно, первоначальное предположение не может быть принято во внимание и должно быть устранено.
Этот вид доказательства подобен доведению до абсурда, упоминавшемуся при обсуждении теории эволюции Анаксимандра. Но существует важное отличие. При обычном доведении до абсурда доказывается, что, поскольку вывод ложен, следовательно, и одна из предпосылок - ложная.
Зенон отрицал бесконечное пространство, поскольку если Земля заключена в пространстве, то в чем, в свою очередь, заключено оно?
Зенон же, напротив, пытается показать, что из определенного предположения можно получить два противоречащих друг другу заключения. Это означает, что заключения на самом деле не неверны, а невозможны. Отсюда, как он утверждает, предположение, из которого выведено это заключение, само по себе невозможно. Этот вид доказательства производится без всякого сравнения между заключениями и фактами. В этом смысле это чистая диалектика и в постановке вопроса, и в ответе на него. Диалектическое доказательство было впервые систематически развито Зеноном. Оно имеет очень важную функцию в философии. Сократ и Платон переняли его от элеатов и развили по-своему, и с тех пор оно приняло угрожающие размеры в философии.
Доказательства Зенона в основном направлены против пифагорейской концепции единицы. И в связи с этим в нем содержатся определенные аргументы против пустоты и против возможности движения. Рассмотрим сначала доказательства, показывающие несостоятельность понятия о единице. Что бы мы ни рассматривали, доказывал Зенон, рассматриваемое должно иметь какую-то величину. Если бы у вещи совсем не было величины, она бы не существовала. Если это допустить, то то же самое можно сказать о каждой части: часть тоже будет иметь какую-то величину. Одно и то же, сказать это один раз или говорить это всегда, утверждал Зенон. Это - выразительный способ введения бесконечной делимости; ни про одну часть нельзя было бы сказать, что она наименьшая. Тогда, если бы вещи были множественны, они должны были бы быть маленькими и большими одновременно. Действительно, они должны быть так малы, как если бы они не имели размера, так как бесконечная делимость показывает, что число частей - бесконечно, а это требует единиц, не имеющих величины, и, следовательно, любая их сумма также не имеет величины.