Выбрать главу

MUTATIS MUTANDIS

The power of the homeotic genes over the number and kinds of body parts has led some scientists to propose that they must be important in evolution; that they have somehow, worms to whales, provided animals with their staggering variety of forms. There may be something to this. People with extra ribs, specifically those who have extra ribs located on what should be their necks, are, for example, a bit like snakes. Snakes don’t have necks at alclass="underline" they have rib-bearing vertebrae that run all the way to their heads. This is because the pattern of Hox gene activity in the somites of snake embryos is quite different from that of necked reptiles, birds and mammals – a difference that also explains, incidentally, why snakes don’t have arms. The position of arms, more generally fore-limbs, is dictated by the same Hox gene calculation that decides the allocation of vertebrae between neck and ribcage. No neck, no arms; it is as simple as that.

The beguiling quality of the homeotic genes has, however, less to do with differences among species than with similarities. These genes have a universality that is simply breathtaking. Flies use them to order their segments; we use them to sort out our vertebrae – but in both there is the common theme of ordering parts along the head-to-tail axis of the body. The similarities between the homeotic genes of vertebrates and insects also go far deeper than their general uses: they go right to the genome.

Homeotic genes come as clusters: groups of genes arrayed side by side on a single chromosome. The first few genes in the fly’s homeotic cluster are involved in giving the head segments of the fly their identities; the next few genes along do the same for the thoracic segments; and the last few do the same for the abdominal segments. There is, it seems, a uncanny correspondence between the order of genes on the chromosome and the order of the fly itself. So, too, mutatis mutandis, is it for us. We have four clusters of homeotic genes on four chromosomes against the fly’s one, but within each cluster the genes preserve the order along the chromosome that their cognates have in flies. Just as in flies, the first genes of each cluster are needed for our heads, the last for our tails, and the rest for the parts in between.

Why the homeotic genes should work in this way, and why they should have stayed doing so, is not clear. Nevertheless, they point to a system of building bodies that evolved perhaps as much as a thousand million years ago in some worm-like ancestor and that has been retained ever since. Indeed, the homeotic genes were merely the first indication that many of the molecular devices that make our bodies are ancient. Over the last ten years it has become plain that we are, in many ways, merely worms writ large. A gene called ems is needed to make a fruit fly’s minute brain. So vast is the evolutionary gulf, both in time and complexity, between a fly’s brain and the hundred-thousand-million-neuron edifice perched upon our own shoulders, that one could hardly expect that the same devices are used in both. Yet mutations in a human cognate of ems cause an inherited disorder that results in a brain abnormally riven with fissures (and so mental retardation and motor defects). Another fly gene called eyeless is needed to make a fly’s compound eyes. Flies devoid of eyeless are, well, eyeless. So, in effect, are humans who inherit mutations in the cognate gene. They are born without irises.

In the cyclical way of intellectual fashion, all this has been said before, albeit far more obliquely. More than 150 years ago, that eccentric genius Étienne Geoffroy Saint-Hilaire – Linnaeus of deformity, discoverer of the universal law of mutual attraction – sought to construct a scientific programme, a philosophic anatomique, that would demonstrate that the animal world, seemingly so vast and various, was in fact one.

His initial goal was modest enough. Geoffroy attempted to show that structures that appear in mammals were the same, only modified, as those that appeared in other vertebrates, such as fish, reptiles and amphibians. In other words, he attempted to identify what we now call homologues, arguing, for example, that the opercular bones of fish (which cover the gills) were essentially the same as the tiny bones that make up the middle ears of mammals (the malleus, stapes and incus).

But opercular bones were small beer for a truly synthetic thinker: Geoffroy went on to find homologies between the most wonderfully disparate structures in the most wildly different creatures. Confronted with the exoskeleton of an insect and the vertebrae of a fish, he proposed that they were one and the same. To be sure, insects have an exoskeleton (all their guts inside their hard parts) while fish have an endoskeleton (bones surrounded by soft parts), but where other anatomists saw this as ample reason to keep them distinct, Geoffroy explained with the simple confidence of the visionary that ‘every animal lives within or without its vertebral column’. Not content with this, he went on to show how the anatomy of the lobster was really very similar to that of a vertebrate – if only you flipped it on its back. Where lobsters carry their major nerve cord on their ventral sides (bellies) and their major blood vessels on their dorsal sides (backs), the reverse is true for vertebrates. And then there was the curious case of cephalopods: if one took a duck and folded it in half backwards so that its tail touched its head (an exercise performed, I believe, on paper alone), did its anatomy not resemble that of a cuttlefish?

It did not. Geoffroy’s speculations attracted the wrath of Cuvier, his powerful rival at the Museum. The result was a debate in front of the Académie Française in 1829 that Geoffroy lost – a duck doesn’t look like a cuttlefish no matter how you bend it; even homologies between fish opercula and the mammalian middle ear didn’t bear serious scrutiny. Yet if the particular homologies that he proposed sometimes seemed absurd, even in his day, his general method was not. Different organisms do have structures that are modified yet somehow similar. Indeed, the idea of homology is so commonplace in biology today (we speak of homology among genes as easily as among fore-limbs) that it is easy to read into Geoffroy’s claims an evolutionary meaning he did not intend. The homologies that he saw, or thought he saw, were, as far as he was concerned, placed there by the Creator. It was the age of what would be called Transcendental Anatomy.