Интересно, что рассеивание в продуктивности работы людей незначительно, и среднеквадратичное отклонение (сигма) составляет всего несколько процентов от рекорда и редко превышает 5-10% его. На этой "одинаковости" людей, то есть близости их возможностей, держится все громадное здание "норм выработки" на производстве.
Нормы зависят от технической вооруженности процесса труда и технологии, но никак не приспосабливаются к разным способностям людей. Все должны выполнять норму.
Но оказалось, что не все виды деятельности подчинены этой закономерности. Пытаясь вскрыть закономерности развития технических способностей, я составил семь технических заданий (для школьников), охватывающих разные стороны технической деятельности.
Это были модели технических работ, доступные для выполнения их детьми разного возраста, начиная с 56 лет. Тут были работы по сборке механизма без инструкций, изготовление модели из проволоки по чертежу, конструированию и.т. п.
Задания имели ступенчатый характер: сначала шли части более легкие для выполнения, а затем все большей и большей трудности, так что каждый мог в зависимости от своих возможностей забраться на одну "ступеньку", на две, три... и т. д., до десяти или даже семнадцати. С этими заданиями я прошел от первого до одиннадцатого класса, давая каждому ученику все семь заданий и записывая не только процент выполнения задания (высшую ступеньку, до которой ученик добрался), но и ВРЕМЯ, затраченное им на эту работу. Рекордсмену, то есть ученику, выполнившему задания на 100% и затратившему минимум времени, давалась высшая оценка - 100 баллов. Если кто-либо выполнял задание также полностью, но затрачивал вдвое больше времени - он получал только 50 баллов, если втрое - 33 и т. д. Выполнившим задание только частично, например на 50%, балл снижался еще вдвое.
Таким образом, каждый из учеников сравнивался по продуктивности работы с самым лучшим - какую долю работы рекордсмена он мог выполнить за одинаковое время.
За два учебных года (1961-1963) мне удалось в виде школьной технической олимпиады измерить продуктивность работы 620 школьников различных классов и построить кривые развития продуктивности работы по отдельным видам заданий и по среднему результату из семи.
Ни одна кривая не была похожа на обычные кривые развития, на все то, что я получал прежде (см. рисунок). Крутизна их подъема (скорость развития) не падала, а в шести кривых из восьми ВОЗРАСТАЛА - вплоть до конца восьмого класса, и они явно не имели никакой асимптоты. Почему? И распределение около среднего значения было явно асимметричным. Смещение вверх ничем и никак не ограничивалось, а явно предполагалось характером самих кривых.
Если самый слабый показывал продуктивность в два-три раза ниже среднего, то самый сильный мог превосходить среднего и в 4, и в 5, и в большее число раз. Видимо, все это потому, что они отражали другую закономерность, говорили о том, что решение таких задач имеет свои особенности. Какие же?
Единственное существенное их отличие состояло в том, что все задания были совершенно НОВЫМИ для учеников. Никто не учил их, как надо выполнять такие задания, и, значит, решение являлось субъективно ТВОРЧЕСКИМ процессом. Видимо, развитие творческих способностей подчинено иным закономерностям, оно идет отлично от развития обычных видов деятельности в обучении, и надо отделить их от другой - нетворческой части.
Интересно, что продуктивность девочек в решении творческих технических задач, ОДИНАКОВАЯ с продуктивностью мальчиков в 6-7-летнем возрасте (рис. 3), растет значительно медленнее, чем у мальчиков, и к концу восьмого класса составляет всего 40-50% их продуктивности Но даже у девочек ясно видно УСКОРЕНИЕ развития по мере продвижения вперед, по мере роста уровня продуктивности. Ускорение особенно явно выступает на участке суммарной кривой от 4-го до 9-го класса. Здесь годичный прирост составляет: в 5-м классе - 18% к уровню предыдущего класса, в 6-м " - 24% " " в 7-м " - 27% " " в 8-м классе - 27% к уровню предыдущего класса, то есть почти постоянен по величине. Такая закономерность математически может быть выражена показательной функцией вида: ПТ = а exp bt, где е - основание натуральных логарифмов. Правда, кривая почему-то "ломается" в 9-м классе, но это особый вопрос. Важно, что кривые развития, общие по характеру, имеют РАЗЛИЧНУЮ степень изменения кривизны, математически выражаемую разной величиной декремента возрастания - b. Меньше всего крутизна подъема растет у самых слабых учеников, быстрее растет крутизна у девочек, еще заметнее рост крутизны у мальчиков. Все движутся по "своим" кривым и все более РАСХОДЯТСЯ, удаляются друг от друга. Эта "расходимость" кривых развития, видимо, отражает реально существующий процесс, в результате которого получаются столь большие различия в развитии творческих способностей всех людей, хотя исходные данные близки или почти одинаковы у всех.