Рис. 17.
Скорость вращения можно настолько увеличить, что кольцо разорвется на ряд шариков меньших размеров. Наблюдая красивый опыт Плато, невольно вспоминаешь о небесных телах, обращающихся вокруг солнца; здесь мы тоже видим центральное тело и ряд вращающихся шаров разных размеров, причем все они обращаются вокруг срединного тела в одном и том же направлении. Надо заметить, что силы, действующие в том и другом случае, совершенно различны, и то, что вы видите сейчас, не имеет ничего общего с солнцем и планетами.
Мы видели, таким образом, что большое количество жидкости может принять форму шара под влиянием свой упругой оболочки, если устранить, как в приведенном опыте, действие силы тяжести. Сила тяжести почти не играет роли, когда мы имеем дело с мыльным пузырем, потому что он чрезвычайно тонок и вес его совершенно ничтожен. В самом деле, всем вам прекрасно известно, что мыльный пузырь имеет совершенно правильную шарообразную форму, и теперь вы знаете, почему именно: причина заключается в том, что упругая перепонка, стремясь сократиться возможно сильнее, должна принять форму с наименьшей поверхностью при данном объеме, а такой формой оказывается шар. Добавим еще, что и здесь, как в случае с масляным шаром, большой мыльный пузырь будет восстанавливать свою форму значительно медленнее, чем маленький, если на стенки их надавить палочкой, завернутой во фланель или другую шерстяную материю.
Воспроизведение опыта с помощью спирта, воды и масла представляет известные трудности главным образом потому, что масло, имеющее ту же плотность, что и окружающая жидкость при данной температуре, становится легче, когда температура повышается, и тяжелее, когда она падает. С повышением температуры масло расширяется сильнее, чем смесь воды и спирта, вследствие чего и плотность его изменяется сильнее. В последней части этой книги я даю сведения о другой смеси жидкостей, которой я пользовался с хорошим результатом, но одна из них — сернистый углерод — обладает таким неприятным запахом и так легко воспламеняется, что эту смесь нельзя рекомендовать для широкого употребления.
Недавно найден другой, очень удобный и красивый способ для наблюдения капель жидкости. Самый подходящий для этого сосуд, который к тому же нетрудно достать, — это стеклянный колпак от столовых часов с плоскими боковыми стенками, чтобы избежать увеличения и искажения фигур, что неизбежно при наблюдении их через искривленные стенки круглого колпака. Надо приготовить раствор трех частей (по весу) обыкновенной соли в 100 частях воды; не следует брать соль с какими-либо примесями, которые не растворяются в воде и придают жидкости вид молока. Нужно взять простую, но совершенно чистую соль. Наполним теперь треть колпака этим раствором.
Затем будем осторожно, по стенкам, приливать к нему воду, чтобы она образовала слой поверх соляного раствора, затем, укрепив воронку с краном так, чтобы конец ее приходился несколько выше соляного раствора, станем медленно приливать через воронку жидкость, называемую ортотолуидином. Это жидкость красивого красного цвета, при температуре около 21° Цельсия она обладает плотностью, промежуточной между плотностью соляного раствора и воды. В результате может образоваться большая капля в пять или семь сантиметров в диаметре, и после удаления воронки она останется в покое в сосуде. При повышении температуры она немного поднимается, при понижении опускается.
Есть еще один подобный опыт. Берется сосуд с горячей водой при температуре между 77° и 82° Цельсия. В сосуд с водой подливают анилин. При температуре немного выше 63° Цельсия анилин обладает такой же плотностью, как и вода, но по мере повышения температуры он, расширяясь сильнее воды, становится легче ее, а при понижении температуры тяжелее ее. Анилин на поверхности воды охлаждается и сейчас же собирается в висячую каплю, которая отрывается от поверхности и падает на дно. Здесь анилин согревается, и вскоре вновь образуется большая капля, которая внезапно отрывается от дна и поднимается на поверхность[5]. Можно проследить медленное отрывание капель и образование маленьких промежуточных капелек, о которых мы поговорим отдельно.
Интересно также наблюдать движение маленьких круглых «глазков» тех жидкостей, которые плавают на поверхности чистой воды; это движение становится более заметным, когда жидкости не вполне чисты. Некоторое время такой «глазок» имеет круглую форму и остается в покое, но потом он вдруг начинает как-то конвульсивно двигаться, принимает форму почки или разрывается на два или больше пятнышек.
Когда на поверхности воды много таких «глазков», спокойное движение их становится непрерывным.
Подобно кусочкам камфары, «глазок» немедленно прекращает двигаться, если только коснуться поверхности воды жирным предметом или кусочком мыла. Диски «глазков» тогда внезапно утолщаются в маленькие чечевицеобразные кружки и остаются в покое.
Нефть, как известно, не смешивается с водой, но отделяется от нее и плавает на поверхности. Если же в воде растворить Некоторое количество мыла, тогда поверхностное натяжение раствора настолько ослабевает, что нефть отделяется от воды гораздо медленнее, если только она выделяется вообще. Травяные тли и. другие вредные насекомые не любят жидкого мыла с керосином, а потому эта смесь с пользой применяется для защитного обрызгивания деревьев. Когда керосин легко выделяется из жидкостей, дерево, обрызганное им, само будет страдать не меньше, чем насекомые, но, если он останется в виде эмульсии в жидкости, дереву не причиняется вреда.
Главный результат, полученный нами из всех описанных наблюдений, следующий. Наружная поверхность жидкости обнаруживает такие свойства, как будто она выделяет из себя упругую оболочку; эта последняя, сокращаясь, стремится придать жидкости такую форму, чтобы поверхность ее стала наивозможно меньшей. Обычно вес жидкости, особенно если мы имеем дело с большим количеством ее, слишком велик по сравнению с небольшой силой упругой оболочки, и действие этой силы может остаться незамеченным. Действие тяжести может быть устранено погружением одной жидкости в другую, равной с ней плотности, и притом такую, которая не смешивается с первой. Влияние силы тяжести почти незаметно, если мы станем рассматривать очень маленькие капельки или пузырьки, потому что в этом случае вес тела ничтожно мал, тогда как упругая сила оболочки остается неизменной. Различные жидкости обладают перепонками с различной силой поверхностного, натяжения. Когда две несмешивающиеся жидкости приводятся в соприкосновение одна с другой, иногда наблюдаются интересные явления.
Мыльные пленки, их натяжение и кривизна
До сих пор я еще не показал на опыте, что мыльная пленка или пузырь в самом деле упруги, подобно куску растянутой резиновой перепонки.
Однако, прежде чем приступить к опытам, посмотрим сначала, с какого рода силами мы будем иметь дело. Если мы имеем чистую воду, то силы, действующие в противоположных направлениях на протяжении линии в один миллиметр, соответствуют весу в 7,7 миллиграмма. Величину эту очень легко определить измеряя высоту, на какую поднимается чистая вода в тонкой стеклянной трубочке.
Известно, что пузыри выдуваются из мыльного раствора, но не из чистой воды. Очень часто поэтому думают, что упругость и сила натяжения поверхностной пленки у мыльной воды должны быть больше чем у чистой. Однако, в действительности дело обстоит как раз наоборот, и в этом можно сразу убедиться, посмотрев, на какую высоту поднимается мыльный раствор в той же тонкой трубочке, в которой раньше поднималась вода. Оказывается, что мыльный раствор поднимается лишь на одну треть прежней высоты. Сила поверхностного натяжения у мыльного раствора немногим превосходит величину в 24 миллиграмма на один сантиметр, тогда как у воды она достигает вес личины в 7,7 миллиграмма на один миллиметр.
5
Опыт рекомендуется производить в высоком химическом стакане, который нагревается в песчаной бане. —