Выбрать главу

Что касается Солнца, то оно находится практически полностью в плоскости симметрии Галактики. Но от центра Галактики Солнце находится далеко, на расстоянии около 10 000 пс. Это ближе к ее границе, чем к центру.

Количество звезд в Галактике огромно — оно превосходит сто миллиардов.

При измерении в спектрах звезд линий поглощения был обнаружен межзвездный газ. Это поглощение вызывалось межзвездным кальцием и межзвездным натрием. Как образуются эти линии? Кальций и натрий заполняют все пространство между наблюдателем и звездой, и через них проходит свет от звезд. Поскольку эти натрий и кальций никак не связаны со звездами, то линии поглощения, создаваемые ими, одинаковые для всех звезд. Кроме того, лучевая скорость, определенная по линиям межзвездного кальция и натрия, очень отличается от лучевой скорости, которая получается по линиям спектра, принадлежащим самой звезде.

Вначале в межзвездном газе обнаружили натрий и кальций. Затем обнаружили кислород, титан и другие элементы. Были обнаружены и некоторые молекулярные соединения: циан СN, углеводород СН и другие.

Плотность межзвездного газа определяется по интенсивности его линий. Измерения показали, что эта плотность очень мала.

Рис. 1. Млечный Путь (вид нашей Галактики сбоку)

В самом центре Галактики плотность межзвездного газа должна быть наибольшей. Но и здесь имеется всего по одному атому в объеме 10 000 см3. Сравним с плотностью воздуха в обычных земных условиях, которая составляет 2,71019 молекул на один кубический сантиметр.

Больше всего в межзвездном газе водорода. Но длительное время его не удавалось обнаружить. Это связано с особенностями физического строения атома водорода, а также с характером поля излучения в Галактике. Дело в том, что плотность излучения в Галактике очень мала. Это обусловлено большими расстояниями между звездами. Для сравнения укажем, что если убрать излучение Солнца, отраженный свет от Луны, все планеты и вообще все источники

света на Земле, то остается примерно такое же излучение, как в Галактике. Это излучение исходит от звезд. А раз мало излучения, мало фотонов (квантов), то и мала вероятность того, что они поглотятся атомами и молекулами межзвездного газа. Тем более что этих атомов и молекул также очень мало. Есть еще одно ограничение — это энергия кванта. Она должна быть определенной для того, чтобы ее поглотил атом или молекула. Если энергия кванта велика, то атом ионизируется, то есть энергия кванта уходит на отрыв от атома орбитального электрона. Если же энергия кванта невелика и ее не хватает на отрыв электрона от атома, то атом поглощает эту энергию, в результате чего атом возбуждается. Это значит, что орбитальный электрон покидает свое постоянное стабильное место и переходит на другую орбиту. Такой атом уже не стабилен, а возбужден. Он со временем может вернуться в стабильное, устойчивое состояние, но для этого ему надо избавиться от той энергии, которую он поглотил. Иными словами, при переходе в свое устойчивое, основное состояние атом должен из-

Рис. 2. Млечный Путь (вид нашей Галактики сверху)

лучить квант той же частоты, а значит, и энергии, которую он поглотил.

В межзвездном газе атомы находятся в возбужденном состоянии очень недолго, всего лишь ничтожную долю секунды. Поэтому большинство атомов межзвездного газа находится в основном в нейтральном, невозбужденном состоянии.

Для того чтобы атом нейтрального водорода перешел в возбужденное состояние, он должен поглотить весьма приличную порцию энергии. Это значит, что излучение, которое должен поглотить атом водорода, должно иметь высокую частоту (чем больше частота кванта, тем больше его энергия). Только в этом случае атом водорода образует линию поглощения. Но эта линия лежит в далекой ультрафиолетовой части спектра. При обычных наблюдениях эта линия в спектрах звезд не получается. По сути, далекое ультрафиолетовое излучение полностью поглощается атмосферой Земли. Для того чтобы замерить эти линии поглощения, надо подняться над атмосферой. Поднять приборы можно с помощью спутников и высотных ракет. Собственно, это и сделали исследователи.

Если атом водорода ионизован, то он и вовсе не способен поглощать излучение. Дело в том, что ионизованный атом водорода — это всего-навсего один протон. Один-единственный орбитальный электрон он потерял при ионизации. Поэтому он уже не способен возбуждаться, — нет электрона, который мог бы поглотить энергию.

Что же касается возбужденных атомов нейтрального водорода в межзвездном пространстве, то их чрезвычайно мало. В атмосферах звезд именно возбужденные атомы водорода создают линии поглощения водорода. Для того чтобы атом водорода перешел в еще более высокое возбужденное состояние, он, уже находясь в возбужденном состоянии, должен поглотить квант не очень большой энергии. Частота этого кванта должна соответствовать видимой области спектра. Именно здесь и образуются линии поглощения.

Поскольку в атмосферах звезд очень большая плотность излучения, там много возбужденных атомов. Поэтому в атмосферах звезд водород дает четко наблюдаемые линии. В межзвездном газе же водород оказался весьма трудноуловимым. Собственно, «уловили» водород не по его линиям поглощения, а по светлым (эмиссионным — излучательным) линиям. Суть таких измерений состоит в следующем. Если на определенном участке неба, куда наведен спектрограф, нет звезд, то в его поле зрения попадает только толща межзвездного вещества. Это вещество содержит как ионы водорода, так и свободные электроны. Они при столкновениях объединяются и образуют нейтральные атомы водорода. Но в каждом таком акте объединения должна быть сброшена лишняя энергия. Она и сбрасывается в виде излучения определенной частоты. Собственно излученный при этом квант должен иметь такую же частоту, какую поглотил атом при ионизации. Вновь объединенный атом водорода может находиться некоторое время в возбужденном состоянии. В основное, невозбужденное состояние он может переходить не сразу, а поэтапно. Другими словами, от избыточной энергии он избавляется не в результате излучения одного кванта, а путем поэтапного излучения нескольких квантов, но меньшей частоты. Среди этих квантов могут быть и очень низкочастотные, которые находятся в видимой части спектра. Именно эти кванты видимого света и выдают присутствие нейтрального водорода в межзвездном газе. Путем измерения этих излучательных (эмиссионных) линий удалось узнать очень многое о межзвездном водороде.

Так было установлено, что нейтральный водород является самым распространенным газом в пространстве между звездами. Число атомов нейтрального водорода примерно в тысячу раз превосходит число атомов всех остальных элементов, взятых вместе.

В самом плотном месте Галактики на каждый атом водорода приходится 2–3 кубических сантиметра. По космическим понятиям это большая плотность. Плотность всего газового вещества около плоскости Галактики составляет 5–8 10–25 г/см3. Это в основном водород, так как масса газа других элементов очень мала. Чтобы проиллюстрировать эту малость, приводят такой факт. Один обыкновенный выдох, который совершает человек, способен создать в кубе с ребром в 400 километров такую же плотность газа, что и плотность межзвездного газа.

Сам межзвездный газ распределен по всей Галактике очень неравномерно. В определенных местах он образует облака, в которых его плотность в десятки раз превышает среднюю плотность межзвездного газа. Естественно, есть и места, где межзвездный газ чрезмерно разрежен. По мере удаления от плоскости симметрии плотность звезд быстро падает. Так же быстро падает плотность межзвездного газа. Общая масса межзвездного газа в Галактике составляет примерно один-два процента от общей массы всех звезд.

Мы уже говорили о том, что часть атомов водорода ионизуется излучением. Самое интенсивное излучение создают звезды — горячие гиганты. Поэтому вокруг них водород ионизован. Ионизацию производит ультрафиолетовое излучение. У разных звезд горячих гигантов разная светимость и разная температура. Чем они больше, тем большую область вокруг звезды ионизует ее излучение. Ученые рассчитали, что при плотностях межзвездного водорода 2–0,5 атома на 1 см3 около звезды спектрального класса О, весь водород ионизован внутри сферы с радиусом 30 — 100 пс. Например, около В1 радиус зоны ионизации звезды составляет 10–30 пс, а около звезды В2 он составляет 4 — 12 пс. По мере перехода к звездам более поздних спектральных классов радиус зоны ионизации очень быстро уменьшается. Так, для звезд класса АО радиус ионизации составляет только малую долю парсека. За пределами зон ионизации практически весь водород находится в нейтральном состоянии.