Выбрать главу

(Мужчины) чувствовали смущение в присутствии женщин. <...> Жизнь в колледжах была организована, как в монастыре. Хороший стол, хорошие напитки предназначались для мужчин. Если какой-либо коллега был женат, его жену не принимали.

Впечатление Шрёдингера об обстановке в колледже св. Магдалины в Оксфорде

Часто бывало, что ученому «становилось не по себе, когда его сосед по столу, которому он с присущей ему откровенностью высказывал свое мнение, принимал важный вид, почти как какой-то бывший премьер-министр». Тоска по дому все не проходила, и в это время давний университетский друг Шрёдингера Ганс Тирринг предложил ему место профессора в университете Граца — австрийском городе, расположенном на юго- востоке страны. Шрёдингер почувствовал, что части большого пазла его жизни, который разлетелся после побега из Берлина, наконец, становятся на место. Отношения Артура и Хильды исчерпали себя. По возвращении на родину Шрёдингер найдет себе новую работу, вернет родной язык, свою дочь Рут, а также обретет новую любовь — Ханси Бауэр, дочь генерального директора страхового общества, в котором Аннемари работала после их помолвки в Вене.

Богатый внутренний мир ученого мешал ему ясно видеть происходящее вокруг него. Шрёдингер даже не подозревал, что его страна вскоре будет присоединена к Третьему рейху... И что нацисты не забыли его дерзкого отъезда из Берлина. Через много лет он расценит это решение вернуться домой как «беспрецедентную глупость».

Аллергия на классическую физику

Вернер Гейзенберг благодаря отличному образованию обладал нестандартным мышлением. Его отец был профессором греческого языка в университете Мюнхена, мать — дочерью ректора закрытого института. Гейзенберг любил быть первым во всем, чем занимался, — не важно, о чем шла речь: о теоретической физике, игре в настольный теннис или музицировании на пианино (на этом инструменте он играл с почти профессиональной виртуозностью). В мире науки Гейзенбергу посчастливилось встретить лучших учителей: «Я выучил физику, смешанную с оптимизмом Зоммерфельда и математикой Макса Борна, тогда как Нильс Бор посвятил меня в глубокий философский смысл научных проблем».

Неожиданный приход Гейзенберга в квантовую механику означал появление человека, который мыслил оригинально и без всяких обязательств по отношению к наследию прошлого. Планк был прав, утверждая, что «новая научная правда побеждает не потому, что удается переубедить оппонентов и заставить их прозреть, а больше благодаря тому, что оппоненты в конце концов умирают, уступая место новому поколению, для которого эта правда уже привычна». Для движения вперед нужно было, чтобы пришло новое поколение, способное без внутренних затруднений работать над пробелами, уже заполненными квантовой теорией, и углублять знание. Первая мировая война задержала упомянутую смену поколений. Многие молодые ученые, такие как Шрёдингер, должны были оставить исследования и пойти на фронт. Кто-то из них не вернулся из окопов, и их возможный вклад в науку погиб вместе с ними. В первые послевоенные годы Германия, изгнанная из международного сообщества, страдала от научной изоляции. Однако когда Гейзенберг вошел в зрелый возраст, лед тронулся.

В статье, которая вскоре сделает его знаменитым, Гейзенберг прислушался к словам из «Логико-философского трактата» Людвига Витгенштейна, опубликованного четырьмя годами ранее: «О чем невозможно говорить, о том следует молчать». Он применил этот совет, исследуя мир атомов: «О том, что невозможно измерить, следует умолчать». Объясняя феномены, ученые должны были воздержаться от введения элементов, которые невозможно измерить в лаборатории. Добавление любого элемента ради того, чтобы облегчить понимание, могло завести науку в тупик. Так Гейзенберг положил начало физике для канатоходцев. Прежде всего необходимо придерживаться математических правил. Тот, кто видел дальше других благодаря своему воображению, заканчивал тем, что спотыкался. Исходя из этого было несложно предвидеть результат: не следует применять интуитивное понимание к теории, которую невозможно увидеть. Статья Гейзенберга под названием «О квантовотеоретическом истолковании кинематических и механических соотношений» появилась летом 1925 года — за шесть месяцев до волновой механики Шрёдингера.

Австрийский физик получает Нобелевскую премию из рук короля Швеции Густава V в 1933 году.

Шрёдингер в период своего пребывания в колледже св. Магдалины в Оксфорде (около 1934 года), где он активно участвовал в споре относительно интерпретации квантовой теории.

Эрвин Шрёдингер на конференции, около 1950 года.

Если Шрёдингера охватывало творческое вдохновение, когда он находился на курорте в компании таинственной дамы, то Гейзенбергу меньше повезло с романтическими обстоятельствами: к нему пришло озарение, когда он в полном одиночестве находился на острове Гельголанд в Северном море, в 70 километрах от суши — остров был почти полностью лишен растительности, и ученый здесь надеялся спастись от жестокого приступа сезонной аллергии. «По прибытии на остров я, должно быть, находился в жалком состоянии, — вспоминает он. — Из-за моего опухшего лица дама, которая сдавала мне комнату, заподозрила, что я подрался накануне вечером, и прочитала мне наставления».

Гейзенберг на острове много купался и гулял в дюнах, но также оставлял время для размышлений. Ученый поставил перед собой сложную задачу — «создать теоретическую базу для квантовой механики, которая основывается исключительно на отношениях между величинами в принципе наблюдаемыми». Он откинул несколько заметок, например об орбитах Бора, в которых было написано, что представлениям об орбитах электронов мы обязаны воображению, поскольку до сих пор никто не смог их зарегистрировать с помощью экспериментов и приборов. Гейзенберг решил опираться в поисках математической закономерности только на наблюдаемые величины.

В случае спектров это частоты и интенсивности, и ни к чему бессмысленное отслеживание положения и скоростей электронов. Гейзенберг разработал систему, в которой наблюдаемые объекты были единственным материалом для построения модели. Главная забота ученого состояла в том, чтобы дать наблюдаемому объекту концептуальную основу, свободную от противоречий: «Особенно меня терзали сомнения относительно того, будет ли выполняться закон сохранения энергии. Я знал, что если энергия не сохранится, значит, концепция неверна».

Принципиальные измеримые показатели, относящиеся к динамике частицы (заряд, частота или энергия), характеризовали ее переход между начальным и конечным состоянием, которое ученый представил совокупностью характеристик пит. Затем он подключил к переходам вероятности и выявил правила, их регулирующие. Гейзенберг доказал мастерство, воплощая свои физические предположения с помощью математических моделей, которые он не знал и с которыми импровизировал.

И тут ученый наткнулся на «существенную сложность». В своих расчетах, умножая заряд одной частицы на ее энергию, он получал разные результаты, когда менял местами множитель и множимое. И даже несмотря на это расчеты не приводили к несогласованности. Когда Гейзенберг увидел, что закон сохранения энергии соблюдается, его охватило сильнейшее волнение: 

«В первый момент я до глубины души испугался. У меня было ощущение, что я гляжу сквозь поверхность атомных явлений на лежащее глубоко под нею основание поразительной внутренней красоты, и у меня кружилась голова от мысли, что я могу теперь проследить всю полноту математических структур, которые там, в глубине, развернула передо мной природа. Я был так взволнован, что не мог и думать о сне. Тогда я вышел из дома и направился к южной стороне острова. Там я заметил огромную скалу в виде башни, она возвышалась над морем, и я захотел взобраться на нее. Уже на вершине я дождался восхода солнца».