Выбрать главу

Этот список богатств, таящихся в древнейших породах Земли, можно было бы продолжить. Железные руды Кирунавары (Швеция), Верхнего озера (Канада) и Бихара (Индия); марганцевые месторождения Хингана, Индии, Бразилии, Западной и Южной Африки; никелевое месторождение Сёдбери (Канада), дающее 80 % мировой добычи этого металла, и т. д. Словом, докембрий заслуживает того, чтобы его изучали самым тщательным образом.

Мы уже говорили, что установление возраста горных пород во многом определяет и направление поисков полезных ископаемых. Казалось бы, что методы датировок горных пород по радиоактивным изотопам полностью решают эту проблему.

К сожалению, дело обстоит не просто. Во-первых, в горных породах не так много минералов, в которых содержатся эти изотопы, и находки их в количестве, достаточном для получения убедительных цифр, — скорее редкое исключение, чем правило. Во-вторых, эти минералы за миллионы лет подвергались воздействию различных процессов, которые значительно изменяли их структуру и влияли на распределение в них радиоактивных изотопов и продуктов их распада. Мы говорили, что на скорость радиоактивного распада не влияют никакие внешние воздействия. Но продукты этого распада могут не сохраниться в минерале с изменившейся разрушенной структурой.

В кристаллах атомы, расположенные в строго определенном порядке, слагают так называемую кристаллическую решетку. Атомы, образующиеся при радиоактивном распаде (например, аргона или гелия), застревают в этой решетке. Измененные, разрушенные минералы теряют радиогенные элементы. Это меняет соотношения между первичным изотопом и продуктами его распада — цифра возраста становится меньше, а минерал кажется более молодым. Вполне возможна и обратная картина. В соседнем минерале, кроме своих собственных, могут появиться и новые, привнесенные извне атомы радиогенного аргона или гелия, и анализы могут показать возраст больший, чем он есть на самом деле. В этом, видимо, заключается одно из вероятных объяснений тех огромных цифр — до 15 млрд. лет, — о которых мы упоминали выше.

Эти цифры получены ленинградским ученым профессором Э. Герлингом, обнаружившем на Кольском полуострове, в Мончетундре, горные породы с совершенно необычным на первый взгляд соотношением калия и аргона. Напомню, что возраст всей Земли оценивается в 3,5–4 млрд. лет. А кольские породы были вдвое, а то и втрое старше! Мало того. Существующие представления о возрасте Земли хорошо согласуются с подсчетами астрофизиков, которые оценивают возраст Солнца в 5 млрд. лет, а возраст Вселенной — не более чем в 15–20 млрд. лет. Есть теории, согласно которым всего 12 млрд. лет назад наша Вселенная представляла собой гигантскую сверхплотную ядерную «каплю», начавшую в то время расширяться. Выходит, что эти камни с Кольского полуострова присутствовали при рождении Вселенной?

Последовали многочисленные проверки. Ученые убедились, что возможность лабораторной ошибки или неточностей в вычислениях исключена. И результаты, которые сначала обсуждались в узком кругу специалистов, появились в печати. Сейчас еще трудно сказать, к каким выводам придут ученые. Может быть, мы имеем дело с горными породами, поднявшимися с больших глубин, и их возраст — это возраст внутренней части, сердцевины нашей планеты. Выходит, Земля образовалась не сразу, а как бы в несколько приемов. А может быть, не весь аргон образовался только за счет калия?

Представим себе, что существовали какие-то полностью распавшиеся, так сказать, вымершие элементы. Они-то и были истинными родителями аргона. А мы, сравнивая количество атомов аргона только с количеством атомов калия, получаем заведомо преувеличенные цифры. Такое объяснение помогло бы, очевидно, решить и еще одну загадку, связанную с докембрием. Я уже упоминал, что Н. С. Шатский оценивал продолжительность рифейской эры примерно в 150–200 млн. лет. Он подчеркивал при этом, что по общему типу строения, характеру горных пород и мощности, толщине осадков рифейские отложения в принципе очень похожи на палеозойские. Но определения абсолютного возраста и здесь приводят к ошеломляющим выводам. Они показывают, что рифей длился не менее миллиарда лет. Значит, рифейские толщи накапливались раз в пять медленнее, чем точно такие же песчаники, сланцы и известняки палеозоя. Толща известняков мощностью 1000 м на Урале в девонский период отложилась за какие-нибудь 10–20 млн. лет. Точно такая же по мощности карбонатная толща, известная под названием миньярской свиты, отлагалась на Урале в рифее. Возраст ее нижней части 850 млн. лет, а кровли — 620 млн. лет. Следовательно, отложение миньярской свиты длилось раз в 10–20 больше — свыше 200 млн. лет! Выходит, известковые или на дне рифейских морей накапливались раз в десять медленнее, чем девонские осадки.

Некоторые исследователи, правда, пытаются объяснить эти явления недостаточной изученностью древних осадочных толщ. А может быть, говорят они, геологи просто не замечают каких-то скрытых перерывов в отложении осадка? На это геологи резонно отвечают, что можно ошибиться и раз, и два, и три — но ведь такое явление замедленного осадконакопления наблюдается всюду, где только встречаются докембрийские толщи.

А может быть, не осадок накапливался медленнее, а аргон — быстрее? Пусть цифры безупречны с лабораторной точки зрения. Но отражают ли они действительно абсолютный возраст породы? Если допустить, что в докембрии существовал какой-то дополнительный источник аргона, многие поразительные явления найдут очень простое объяснение.

Но главная трудность в широком применении метода определения возраста пород по радиоактивным изотопам состоит в том, что далеко не каждый камень пригоден для этого. Процессы, воздействовавшие в течение миллионов лет на докембрийские горные породы, безвозвратно уничтожали и без того не слишком обильные запасы минералов, пригодных для определения абсолютного возраста пород. К тому же напомним, что первые более или менее многочисленные определения возраста докембрийских пород были получены только в самые последние годы. А докембрий изучается десятки и сотни лет.

Естественно, что геологи напряженно искали методы надежного сопоставления древних толщ с основными, наиболее полно и хорошо изученными опорными разрезами, где последовательность слоев не вызывала никаких сомнений. Но арсенал таких методов был, к сожалению, невелик, а сами методы не слишком надежны. Основой большинства из них было сравнение похожих и непохожих горных пород.

Если где-нибудь в обрыве у реки встречаются черные сланцы или красные песчаники, и точно такие же породы видны на склоне ближайшей горы, можно предположить, что они образовались в одно и то же время. Еще лучше, если мы видим несколько пластов, сменяющих друг друга в одной и той же последовательности. Этот метод широко применяется при изучении древних толщ (рис. 1).

Рис. 1. Строение лахандинской свиты (средний рифей в Учуро-Майском районе Восточной Сибири), разрезы уверенно сопоставляются по однотипным породам, залегающим в одинаковой последовательности (но С. В. Нужнову) 1 — доломиты; 2 — известняки; 3 — онколитовые известняки; 4 — глауконитовые известняки; 5 — битуминозные доломиты; 6 — обломочные известняки; 7 — темно-серые известняки; 8 — кварцевые песчаники; 9 — конгломераты; К) — алевролиты; 11 — аргиллиты; 12 — железисто-каолиновые породы; 13 — конкреция бурого железняка; 14 — прослои и линзы бурых железняков; 15— строматолитовые доломиты. Индексы: kd — кандыкская свита (верхний рифей); Lh4— игниканская подсвита лахандинской свиты; Lh3 — нtльканская подсвита лахандинской свиты; Lh2 — мильконская подсвита лахандинской свиты; Lh1 — кумахинская подсвита лахандинской свиты; zp — ципандиская свита.

Но он пригоден только для относительно небольших площадей. Это понятно: ведь в одно и же время в разных участках большого моря могли выпадать осадки, различные по составу и внешнему виду. У берега это была гальки, чуть поглубже — песок, а еще дальше от берега — тонкий глинистый ил.