Первым прибором, который использовался тогда в исследованиях излучений, был спинтарископ (от греческого «спинтер» — искра) Крукса — это коробочка, верх которой закрыт стеклом, а на дно нанесено вещество-сцинциллятор, дающий вспышку при ударе альфа-частиц, так что наблюдателю необходимо сидеть рядом и считать число вспышек за определенное время.
Вторым прибором стал счетчик Гейгера, разработанный Резерфордом и Хансом Вильгельмом Гейгером (1882–1945) к 1908 г. Он представляет собой металлическую трубку, по оси которой проходит тонкая нить, изолированная от корпуса, на корпус и нить подается электрическое напряжение, которое несколько меньше пробойного. Ток в цепи не идет, но как только через трубку проскочит заряженная частица, она ионизует на своем пути воздух, и по этому каналу начнет проходить ток — загорится лампочка, зазвенит звонок или т. п.
Со счетчиками Гейгера работать в то время было еще нелегко и поэтому часто пользовались методом сцинциляций, считали вспышки. И вот однажды, в 1911 г., в ходе эксперимента по подсчету числа альфа-частиц, рассеянных в тонкой металлической фольге, студент-новозеландец Эрнест Марсден (1889–1970) расположил, возможно по ошибке, несколько таких счетчиков сзади мишени. Они, конечно, должны были молчать, но давали вспышки — редко, очень редко, одна-две на десять тысяч, но вспыхивали!
Резерфорд думал о результатах эксперимента по рассеянию альфа-частиц на металлических фольгах неустанно, но ничего не приходило в голову: «Это было самым невероятным событием в моей жизни. Оно было столь же невероятным, как если бы 15-дюймовый снаряд, выпущенный в кусок папиросной бумаги, отскочил от нее и ударил бы в стреляющего».
Но ведь этого не может быть — не может альфа-частица отлететь назад при ударе о пудинг или кисель, каковыми, согласно Томсону, должны быть атомы!
К тому времени он обзавелся новинкой, первым, как говорят, мотоциклом в Манчестере, и полюбил носиться на нем по окрестностям. (Пэр Британского королевства, получивший титул барона Нельсон оф Кембридж, к тому времени уже лауреат Нобелевской премии, он не забывал своего пастушеского детства на ферме в Новой Зеландии и так и не смог привыкнуть к великосветским манерам.) И вот как-то раз мотоцикл сломался на пустынной дороге, и Резерфорду пришлось заночевать в поле в стогу сена.
Он дремал, поглядывал на звезды, и тут перед ним возник образ: атом как Солнечная система — в середине ядро вместо Солнца, а вокруг крутятся электроны как планеты. Такая модель не могла быть принята современниками[4] — она противоречила теории электромагнетизма Максвелла, согласно которой любой заряд, движущийся с ускорением, в частности вращающийся, должен излучать волны и тереть на это энергию. Значит — в случае движения по окружности — падать на центр за одну миллиардную долю секунды. Но Резерфорд ее упрямо отстаивал (сотрудники называли его за упрямство, своеобразное чувство юмора и громогласность Крокодилом): атом почти пустой — ядро в 10 тыс. раз меньше атома в целом, а электроны крутятся вокруг него!
Это высшая музыкальность в области мысли.
А. Эйнштейн
В том же году к Резерфорду приехал на стажировку молодой датский физик Нильс Хендрик Давид Бор (1885–1962, Нобелевская премия 1922). Вся лаборатория быстро убедилась в том, что ни к каким приборам его и близко подпускать нельзя — ломались самые, казалось, прочные установки (он некогда входил в сборную Дании по футболу, и когда в 1922 г. в Стокгольме ему была вручена премия, одна датская газета написала, что «известному футболисту Нильсу Бору» присуждена Нобелевская премия). Резерфорд со вздохом разрешил ему сидеть за столом и только думать — теоретиков он недолюбливал, да и профессия такая еще как-то официально не отделилась.
Бор думал медленно, но упорно и все равно ничего не получалось: ведь по электродинамике Максвелла, гениального и неоспоримого, всякий заряд, когда его ускоряют, должен излучать электромагнитные волны, постепенно тереть энергию и замедляться, падать на ядро — такой атом заведомо неустойчив. Единственное, по сути дела, что уже установлено, но только подбором экспериментальных данных без теоретического обоснования — это комбинационный принцип Ридберга — Ритца: частоты излучений атомов (точнее всего, атома водорода) можно представить в виде серий, а все они являются разностью двух каких-то величин.
4
Вообще говоря, схожие идеи выдвигали Хантаро Нагаока в 1904 г., Дж. Стони в 1906 г. и др., но как чисто умозрительные соображения, и все они с негодованием отвергались.