Согласно Ричарду Фейнману, любая теорема, независимо от того как трудно было ее впервые доказать, рассматривается математиками, как только она доказана, как тривиальная. Поэтому есть два и только два типа математических утверждений: тривиальные и те, которые еще не доказаны. Несколько по иному можно сказать так: доказанную теорему математики изменить уже нельзя, поскольку она следует установленным аксиомам теории, а физическое утверждение, как правило, может и будет изменяться и дополняться с изменением основной базы теории.
Итак, математика — творение чистого разума. Но почему математические расчеты на основе предположений, принимаемых физиками, ведут к результатам, которые оправдываются потом на практике, почему они описывают реальные явления?
В 1960 г. выдающийся физик, разрешавший многие тонкие проблемы, Юджин Вигнер (1902–1995, Нобелевская премия 1963 г.) опубликовал статью «О непостижимой эффективности математики в естественных науках», вызвавшую широкую полемику в научных и философских кругах. В ней он и задает вопрос: как и почему творение нашего разума, не связанное никакими условностями, приводит к решениям, которые могут столь адекватно отражать природные явления, — и не находит ответа.
Но это вовсе не значит, что все математические конструкции применяются в физике, биологии или экономике. Вот, скажем, математики рассматривали теорию функций, определенные степени которых удовлетворяют некоторому условию, причем, конечно, в общей теории рассматривали произвольные степени. Потом оказалось, что такая теория с первой степенью описывает классическую механику и термодинамику, а со второй — волновые явления и квантовую механику, остальные возможные степени, в том числе дробные, пока не востребованы, и никто не может сказать, нужны они будут когда-нибудь в какой-то теории или нет.
Таким образом, получается, что математика в ходе собственных исследований заранее готовит обширный арсенал средств, некоторые из которых затем оказываются чрезвычайно полезными для ученых иных специальностей.
Но иногда случается и наоборот: Ньютону пришлось изобретать математический анализ[6]; мы уже говорили, что Хевисайду пришлось выдумывать новые математические приемы — операционное исчисление[7]. С середины 1920-х гг. Поль Дирак проводил расчеты с помощью введенной им дельта-функции, которая во всех точках равна нулю, а в одной точке — бесконечности. Математики, придерживавшиеся традиционных взглядов, приходили в ужас от такой безграмотности, но в 1947 г. Лоран Шварц построил новую математическую теорию и ввел такие функции в стандартный математический оборот. Иногда и в гораздо менее значительных работах физикам приходится решать задачи, до которых руки математиков не доходили.
Различие между физикой и математикой проявляется еще в том, что мы говорим: «физик открыл такое-то явление», но «математик придумал или изобрел такой-то прием или теорию».
Так-то это так, а все же физику-теоретику приходится изучать и применять математику: во-первых, перевод с обычного языка на математический позволяет резко сократить и унифицировать описание явлений, тем более — ход их количественных изменений. Так, колоссальный объем экспериментальных наблюдений Фарадея, плюс еще больший объем всего, что было сделано до него, Максвелл свел всего к четырем уравнениям. Во-вторых, как уже отмечалось, хотя бы в связи с электродинамикой Максвелла, уравнения нередко оказываются «умнее» тех, кто их вывел — они приводят к совершенно нежданным результатам, и мы еще не раз будем иметь повод об этом сказать.
Степень владения математикой у физиков-теоретиков различна: бывают виртуозы расчетов — А. Зоммерфельд, Г. Бете, Л. Д. Ландау[8], Дж. Швингер; бывают физики, старающиеся ограничиться минимальными средствами, — Н. Бор, Э. Ферми, а иногда в физику с успехом входят математики — Дж. фон Нейман, С.Улам[9], Н.Н. Боголюбов (вспоминаем только ученых XX в.). Некоторые физики считают, что математику для физиков нужно вообще излагать иным, чем для математиков, образом — такие курсы математики писали X. А. Лорентц, Я.Б. Зельдович, Ли Цзян-дао (о двух последних — ниже), иногда в книги и даже статьи по физике вставляются разделы по менее знакомым для читателей вопросам математики.
8
Вспоминается такая история. Двое моих приятелей, молодые, но уже зарекомендовавшие себя теоретики, чуть ли не год безуспешно возились с каким-то уравнением. Наконец, директор их института, друживший с Ландау, не выдержал и понес ему листок с уравнением: Ландау долго отказывался на него взглянуть (любимая фраза в таких случаях: «Вас много, а я один!»), но все же взял и через пару часов, вернувшись от зубного врача, отдал тот же листок с решением на обороте — он сказал, что решал, пока ему сверлили зуб, чтобы отвлечься от боли… Один из приятелей впал после этого в глубокую депрессию — такой удар по самолюбию!
9
С. М. Улам — выдающийся польско-американский математик, написал любопытную книгу воспоминаний: Улам С. М. Приключения математика. М.: РХД, 2001.