Выбрать главу

Чем прочнее связь, тем больше выделяется энергии при ее образовании и тем больше, соответственно, потребуется затратить энергии, чтобы эту связь снова разорвать. Образование любых структур всегда связано с выделением и рассеянием энергии связи, то есть всегда связано с диссипацией (рассеянием), общим понижением качества энергии.

Кстати, прежде чем образоваться углерод-кислородным и водород-кислородным связям при сжигании топлива, должны быть разорваны связи между углеродными и водородными атомами в углеводородах бензина, а также между атомами кислорода в его молекуле, на что нужно затрачивать энергию. Но межатомные углеродные и водородные связи в молекулах топлива и связи в молекуле кислорода намного слабее кислородных связей в продуктах сгорания, и затраты гораздо меньше выигрыша. Энергия, затрачиваемая на разрыв связей в компонентах горючей смеси (и на сближение освободившихся атомов с атомами кислорода), называется энергией активации и черпается из теплового движения молекул. Поджигание смеси искрой — это сообщение молекулам необходимой первоначальной энергии активации. Дальше горение поддерживается уже за счет тепла, выделяемого в его процессе. Если бы не необходимость в энергии активации, вещества, способные связываться с выделением энергии (например, органика в земной кислородной атмосфере), вообще не могли бы существовать в соседстве друг с другом.

В урановых ядерных реакторах, с помощью которых уже сейчас производят примерно 15 % электроэнергии в мире, источником энергии служит деление ядер урана. Но, тем не менее, выделяется опять-таки энергия связи: во фрагментах разделившегося ядра урана нуклоны связаны прочнее, чем в исходном ядре, и разница энергий связи и переходит в кинетическую энергию продуктов деления, а затем в тепло.

Водород — основной элемент Вселенной, и синтез гелия из него — основной, первичный, источник энергии для всех наблюдаемых нами процессов. Все наши земные горючие ископаемые и кислород атмосферы — это продукт воздействия на Землю энергии Солнца, которая обусловлена синтезом гелия из водорода. Излучение Солнца разрывает химические связи и запускает сложные цепочки реакций, которые приводят к накоплению потенциальной химической энергии их продуктов.

Резюме

Энергия — физическая характеристика, введенная когда-то учеными, определяет потенциальную возможность системы совершить механическую работу. Это понятие оказалось, наверное, одним из самых важных потому, что все процессы как в живой, так и в неживой природе невозможно описать без этого понятия. Без энергии невозможно существование жизни. Вопрос, связанный с механизмами использования и добычи энергии, относится к энергетике. В процессе жизнедеятельности, в том числе, и при решении энергетических проблем, человечество столкнулось с вопросами несовместимости человеческих потребностей и природных возможностей. Это сложнейшая экологическая проблема современности!

Вопросы для обсуждения

1) Энергия — важнейшая физическая характеристика.

Виды энергии — механическая, тепловая, электромагнитная, гравитационная, ядерная.

2) Закон сохранения энергии и однородность времени.

3) Проблемы энергетики.

Существующие в настоящее время источники энергии: химическая энергия сгорания топлива (газ, нефть, уголь); механическая энергия воды и ветра (гидроэлектростанции и ветровые электростанции); солнечная энергия излучения (солнечные батареи); ядерная энергия (АЭС); в будущем: термоядерная энергия синтеза («горячий» и «холодный» ядерный синтез).

4) Проблемы экологии, связанные с энергетикой.

3.5. Понятие качества энергии, энтропия, второе начало (принцип) термодинамики и принцип минимума производства энтропии

В приведенных выше примерах, во всех реакциях, высвобождающих энергию связи, эта энергия переходит в конечном итоге в теплоту (и отчасти в излучение — в ту его часть, которая уходит в космическое пространство, где она тоже имеет шанс превратиться-таки в тепло). Так что же такое теплота? Теплота — это, по существу, то же, что и кинетическая энергия, но это энергия неупорядоченного, хаотического движения частиц (молекул газа, например). Из наблюдений известно, что переход всех видов энергии в тепло — это наиболее распространенный процесс и в природе и в технике. Так, например, трение присутствует везде, и оно превращает упорядоченное движение тел в хаотическое движение составляющих их молекул, нагревая трущиеся поверхности. При работе любых электрических машин, при передаче электрической энергии по проводам часть ее всегда превращается в тепло.