Выбрать главу

Деления на трубку он нанес, применив весьма остроумный способ: покрыл стеклянную трубочку пчелиным воском, а затем сделал на воске поперечные риски очень острым ножом. Затем он погрузил трубочку в разведенную кислоту. Кислота пощадила воск и разъела стекло, обнаженное надрезами, — и на стекле появились тоненькие рисочки: погрешность промежутка между делениями не превышала 6 микрон. Так Джоуль превратил тоненькую трубочку в сверхточный термометр. Его метод гравировки с предварительным нанесением маскирующего слоя применяется до сих пор, в частности, в микроэлектронике. Это изобретение, а также невероятное упорство, помогло Джоулю в 1850 году первым в мире определить соответствие между работой и теплом, выделяемой при ее совершении.

ОТ ЭЛЕКТРОНА К ЭЛЕКТРОНИКЕ

Изучать природные явления непросто. И так было всегда. Порой они кажутся слишком беспорядочными и потому легко вводят в заблуждение. Или же слишком отдалены от повседневности. Чтобы обойти подобные затруднения, ученый пытается воспроизвести естественные условия в лаборатории — чтобы все было под рукой. Подчас это достигается посредством «миниатюризации» изучаемого явления: оно воспроизводится в уменьшенном масштабе. Показательный пример — те эпизоды в истории науки, которые вызвали пришествие физики элементарных частиц, которая в свою очередь породила электронику, а затем и микроэлектронику.

В XVIII в. физики, в том числе аббат Ноле во Франции и Бенджамин Франклин в США, изучали молнию, то есть электрические разряды в атмосфере. Вскоре они обнаружили, что неплохо бы заиметь «коробочку» для воспроизведения подобных явлений в лаборатории, где можно было чувствовать себя столь же непринужденно, как в салоне небедного буржуазного дома. Конечно, изучать молнию в природе и на природе вроде бы предпочтительнее — большая точность, и все такое. Но уж очень это небезопасно: к тому времени от удара молнией погибло уже несколько физиков, пытавшихся исследовать грозы. Немецкий промышленник Генрих Гейслер, торговавший научными приборами, выпускаемыми его предприятиями, в 1857 году воспроизвел самые настоящие малюсенькие молнии между двумя электродами в стеклянном сосуде, наполненном газом. В 1874 году английский физик Уильям Крукс откачал газ из стеклянного баллона в надежде, что изучать искусственные молнии станет проще. И тогда же другие физики задались вопросом о сущности молний, рождавшихся в баллоне Крукса. Что это: электромагнитное излучение, как полагали немецкие ученые, или частицы, как думали английские физики? И британец Джозеф Джон Томсон дал убедительный ответ: слегка изменив вакуумный сосуд Крукса, он в 1898 году открыл электрон.

Открытие электрона на пороге XX в. дало начало эре электроники. Последовало неслыханное прежде ускорение миниатюризации, и электроника естественным образом сократилась до микроэлектроники. В который уж раз все начиналось с повседневных затруднений. Поначалу телефонная связь опиралась на ручной труд: телефонистка должна была вставлять штепсели и штекеры в соединительные гнезда и выдергивать эти вилки из розеток всякий раз, когда требовалось соединить двух влюбленных, жаждавших услышать голоса друг друга, или партнеров по бизнесу. Но во всех столицах мира, вроде Нью-Йорка или Парижа, число абонентов росло взрывообразно. Справиться с этой волной могла только автоматизация: телефонисток должны были заменить какие-то электронно-механические устройства. И тогда инженеры сначала придумали электромагнитные реле, становившиеся со временем все более миниатюрными, потом догадались приспособить электронные лампы, те самые диоды, триоды и пентоды, которые трудились в радиоприемниках наших бабушек. Лампы были отдаленными потомками вакуумных баллонов Крукса и действовали как прерыватели — иначе говоря, переключатели — электрического тока. Со временем, однако, жалобы на лампы — они и хрупки, и слишком громоздки, и очень уж нагреваются — становились все громче. Хорошо, давайте поставим вместо лампы что-нибудь твердое и, по возможности маленькое. В начале 1940-х годов решить эту задачу подрядились Джон Бардин, Уолтер Браттейн и Уильям Шокли, работавшие в лабораториях Bell Telephone Company в США. В декабре 1947 года они изобрели устройство, рабочим элементом которого был крошечный полупроводниковый кристалл, и назвали его транзистором. Транзистор, подобно ламповому (вакуумному) триоду, мог усиливать электрический сигнал или действовать в качестве переключателя, при этом транзистор был куда меньше самой маленькой лампы и, что еще важнее, выделял меньше тепла, а это сокращало затраты на системы охлаждения.