Выбрать главу
В ПОИСКАХ ЗДРАВОГО СМЫСЛА

Споры о нанотехнологии сопровождались вопросами, вполне серьезными, без хихиканья над бреднями научных фантастов, сулящих апокалиптический сценарий конца света, когда планету покроет серый кисель. Изобретались страшилки, выдававшиеся за осмысленные аббревиатуры, — вроде АМО (атомномодифицированные организмы), под которыми не кроется ничего осязаемого. Так чего бояться? Неужто нечего? Таковы уж разговоры на эти темы, что насущные вопросы не затрагиваются. Общество, привлеченное было горячностью спорщиков, очень скоро начинает скучать и поворачивается к иным, тоже неотложным предметам.

Прогресс науки порождает серьезные вопросы. Стоит ли упорствовать, настаивая на продолжении исследований, коль скоро закон Мёрфи, гласящий, что «все, что может испортиться, портится», никто не опроверг? Во имя принципа предосторожности, во имя неведомого будущего кое-кто — и это не один человек и даже не два — домогается моратория на нанотехнологии. «Достаточно ли мы контролируем себя, чтобы контролировать эти технологии?» — вопрошают обеспокоенные. Философ Поль Вирилио писал: «Обновление корабля — это уже и обновление мореплавания; изобретение паровой машины, локомотива, было еще и изобретением схождения поезда с рельсов, то есть железнодорожной катастрофы <…> всякий этап технического прогресса приносил не только свой набор инструментов и машин, но и специфические происшествия и несчастные случаи, а также разоблачителей „отрицательного“ в развитии научной мысли»[40].

Отказывающиеся от науки хотят остановить ее, не допустить, чтобы она шла дальше, к нанотехнологии, или требуют хотя бы, чтоб она сделала паузу. Но дело не в нанотехнологиях. Сегодня, как и в любое иное время, все сводится к вопросу о природе или сущности той искорки, которая подвигает некую личность на познание мира вокруг себя или мира внутри себя. Эта искра — то ли демон, то ли добрая фея — прячется в каждом из нас. И никто не имеет права затаптывать и гасить эти искорки.

Приложение I

Коротенькая история микроскопа

Увидеть молекулу через увеличительное стекло невозможно, никакой лупе это не под силу. Размер молекулы воды — 0,3 нанометра, то есть 0,3 от миллионной доли миллиметра. Молекула бензола побольше — 0,5 нм. Состоящие из углерода, кислорода и водорода молекулы липидов и глицинов еще крупнее — до 1 нм. А состоящие из аминокислот молекулы белка вдесятеро больше — с десяток нанометров. ДНК — вообще молекула-великан, «макромолекула», длина которой доходит до многих микрон, а если такую скрученную в спираль молекулу расплести, она растянется на многие метры. Но даже эту воистину гигантскую молекулу в лупу увидеть невозможно.

Какой же прибор взять, чтобы все-таки углядеть молекулу? Оптический микроскоп позволяет благодаря лучам света увидеть в объектив увеличенное изображение малюсенького объекта. В наши дни микроскопы с увеличением в тысячу раз продаются в гипермаркетах. За какую-то сотню евро можно наслаждаться созерцанием волосков на лапках блохи и крошечной живности, кишащей в капле воды, или заняться разглядыванием фацетного глаза мухи. Словом, видеть то же, что и Роберт Гук, Антони ван Левенгук, Галилей — первые исследователи, заглянувшие в трубу микроскопа еще в XVII веке.

Глядя в такой микроскоп, вы увидите паутинку или волос диаметром около 50 мкм такими, словно бы диаметр вырос до 5 см. Так что? Если молекула воды «вырастет» в 1000 раз, то есть до 0,3 мкм, то, значит, ее можно будет увидеть? Увы! Что бы вам ни говорили знатоки микроскопов, знайте: изображение молекулы воды никогда никто в объективе микроскопа не видел — и никогда не увидит. Виноваты свойства света: волна света разлагается и преломляется (принято говорить о «дифракции»), проходя через любой объект, величина которого соизмерима с длиной волны. А видимый свет — это электромагнитные волны длиной около 0,1 мкм. Изображение в этом случае расплывается или вообще пропадает из объектива.

В других микроскопах вместо видимого света используются невидимые лучи (ультрафиолетовые, инфракрасные) или пучки элементарных частиц, а в туннельном микроскопе, многократно упоминавшемся в этой книге выше, работают квантовые явления.

Сегодня микроскопы принято делить на две категории. Если источник света или элементарных частиц располагается поодаль от наблюдаемого объекта, то такой микроскоп называют микроскопом дальнего поля, если же источник и объект рядом, прибор относят к классу ближнего поля (расстояние оценивается относительно длины волны используемого излучения). Чтобы уяснить различие, давайте получше присмотримся к тому увеличительному стеклу, которым в 1668 году воспользовался голландец ван Левенгук. Его увеличительное стекло представляло собой, в сущности, микроскоп с одной линзой почти сферической формы. Свет, например от Солнца или лампы, отражаясь от зеркал, освещает объект и отражается от него. Затем лучи света проходят через линзу и, попадая в объектив, выстраивают увеличенное изображение, наблюдаемое непосредственно. Источник света удален от объекта, и потому линза ван Левенгука входит в класс микроскопов дальнего поля.

вернуться

40

Un paysage d’événements, Paris: Galilée, Coll. «L’Espace critique», 1997.