Выбрать главу

В то же время Дэвид Джонс (David Jones) конструировал замкнутые сфероидальные клетки из своеобразно свернутых нано-графитовых слоев. Было показано, что объектом, внедренным в гексагональную решетку обычного графита и приводящим к образованию сложной искривленной поверхности, может быть пятиугольник. Физхимик-органик Эйдзи Осава (Eiji Osawa) предположил существование полой высокосимметричной молекулы С60 со структурой в виде усеченного икосаэдра, похожей на футбольный мяч.

В 1968 году исполнительный вице-президент компании Bell Альфред Чо (Alfred Cho) и сотрудник отделения исследования полупроводников Джон Артур (John Arthur) обосновали теоретическую возможность использования нанотехнологий в решении задач по обработке поверхностей и достижению атомной точности при создании электронных приборов.

В 1971 году Р. Янг предложил идею прибора Topografiner, послужившего прообразом зондового микроскопа. Однако вскоре работы над прибором были прекращены по экономическим причинам. Через год, в 1972 году, Янг сумел осуществить перемещение и позиционирование объектов в трех направлениях с точностью до 0,01 А (1 нм = 10 А), применив перемещающие устройства на базе пьезоэлектриков. Со времени создания пьезодвигателя прошло более пяти лет. Длительные сроки разработки подобных устройств объясняются тем, что наблюдение за атомарными структурами приводит к изменению их состояния, поэтому требовались качественно новые подходы, не разрушающие исследуемое вещество.

Мировая наука вплотную подошла к началу решения прикладных задач в этой области, когда теоретические и чисто научные исследования стали находить практическое применение в различных отраслях экономики.

Современный вид идеи нанотехнологии начали приобретать в 8о-е годы ХХ века в результате исследований Эрика Дрекслера (Kim Eric Drexler), работавшего в лаборатории искусственного интеллекта Массачусетского технологического института (США).

Эрик Дрекслер, основоположник молекулярной нанотехнологии

Дрекслер выдвинул концепцию универсальных молекулярных роботов, работающих по заданной программе и собирающих любые объекты (в том числе и себе подобные) из подручных молекул. Все это также сначала воспринималось как научная фантастика. Ученый уже тогда довольно точно предсказал немало грядущих достижений нанотехнологии, которые сбываются с 1989 года, причем часто со значительным опережением даже его прогнозов.

Однако, как часто бывает, задолго до работ Дрекслера идею о возможности существования искусственных автоматов-самосборщиков выдвинул математик Джон фон Нейман (John Von Neumann), разработавший теоретическую модель устройства компьютера (компьютер фон Неймана) — первое устройство с клавишным вводом данных.

Роберт Фрейтас (Robert A. Freitas) отмечал: «Ранняя история самовоспроизводящихся систем — это история мышления фон Неймана по данному вопросу». Самовоспроизводящиеся машины (автоматические репликаторы) — ключевое свойство нанороботов, так как эти системы должны как воспроизводить себя из окружающих молекул, так и производить принципиально другие, более совершенные создания.

В дальнейшем прогноз развития нанотехнологий рассматривался через представления, сформировавшиеся в более поздних работах Э. Дрекслера и его последователей: Р. Фрейтаса, Ральфа Меркле (Ralph C. Merkle) и др.

Многие ученые в мире в той или иной степени работали с объектами наноуровня, но термин «нанотехнология» впервые (в 1974 году) предложил японский физик Норио Танигучи (Norio Taniguchi) из Токийского университета. Нанотехнология, по Н. Танигучи, — это «технология объектов, размеры которых составляют порядка 10-9 м (атомы, молекулы), включающая процесс разделения, сборки и изменения материалов путем воздействия на них одним атомом или одной молекулой».

Накопленные знания в области нанотехнологий позволили по-новому взглянуть на ряд уникальных природных явлений. Так в 1975 году немецкие ученые-ботаники из Боннского университета (ФРГ) Вильгельм Бартлотт (Wilhelm Barthlott) и Кристоф Найнуйс (Christoph Neinhuis) обнаружили и запатентовали явление самоочистки поверхностей некоторых растений (Lotus-effect®), а также тот факт, что этот феномен протекает в наноструктурированных поверхностных областях.

Исследования по совершенствованию инструментального обеспечения нанотехнологий вышли на новый уровень. Весной 1981 года немецкий физик Герд Карл Бинниг (Gerd Karl Binnig) и швейцарский ученый Генрих Рорер (Heinrich Rohrer) из Цюрихской лаборатории компании IBM испытали растровый туннельный микроскоп (за это открытие им была присуждена Нобелевская премия 1986 года вместе с Э. Руской). Сканирующий туннельный микроскоп позволил построить трехмерную картину расположения атомов на поверхностях проводящих материалов. При движении острия иглы микроскопа над поверхностью кристалла из кальция, иридия и олова они смогли измерить неровности высотой в один атом. С помощью туннельного микроскопа стало возможным «захватить» атом с токопроводящей поверхности и поместить его в нужное место, то есть манипулировать атомами, собирая из них любое вещество.