Выбрать главу

В настоящее время понятие «нанотехнология» включает в себя не только совокупность методов и способов синтеза, сборки, структурообразования и модифицирования материалов (направленных на создание систем с новыми свойствами, которые обусловлены проявлением наномасштабных явлений и факторов), но и систему знаний, навыков, умений, аппаратурное, материаловедческое, информационное обеспечение процессов, а также технологических операций.

В это же время специалист по компьютерам Уоррен Робинет (Warren Robinet) и химик Стэн Уильямс (Stan Williams) из Университета штата Северная Каролина изготовили наноманипулятор — робот размером с человека, соединенный с атомным микроскопом и управляемый через интерфейс виртуальной реальности. Оператор, манипулируя отдельными атомами, с его помощью мог физически ощущать многократно усиленную отдачу от модифицируемого вещества, что значительно ускоряло работу.

Своего рода сенсацию в сентябре 1989 года совершили американские исследователи Дональд Эйглер (Donald Eigler) и Эрхард Швейцер (Erhard Schweizer) из Калифорнийского научного центра компании IBM. С помощью 35 атомов инертного газа ксенона на очищенной в сверхвысоком вакууме и охлажденной до 4 К поверхности монокристалла никеля они выложили название своей фирмы (рис. 1). Для получения надписи был использован сканирующий туннельный микроскоп. Сделанная надпись просуществовала недолго — атомы быстро «испарились» с поверхности, однако сам факт наличия постороннего атома в молекулярной структуре некоего вещества открывал потенциальную возможность создания молекулярных автоматов, трактующих наличие или отсутствие такого атома в определенной позиции как логическое состояние.

Дальнейшие работы, в том числе российских ученых, показали возможность валентного «закрепления» атомов на различных поверхностях без какого-либо применения криогенной техники.

В продолжение этой темы следует отметить, что в 2008 году ученые из Израильского технологического института (Технион) в честь 6о-летия образования своего государства создали уже целую нанокнигу — Библию. Содержание всего Ветхого Завета было нанесено на кремниевую частицу, размеры которой не превышают 0,5 мм2 (размер булавочной головки).

Рис. 1. Надпись на монокристалле никеля из атомов ксенона (рисунок с сайта mrsec.wisc.edu/./images/ibm.jpg)

Текст был набран с помощью фокусированного ионного пучка, который вытравливал (с помощью ионов галлия) узор на золотой подложке (толщиной 200 нм), покрывавшей основание из кремния. Само нанесение текста заняло не более полутора часов, но программное обеспечение для управлявшего этим процессом компьютера разрабатывалось более трех месяцев.

Ознакомиться с содержанием этой Библии можно только с помощью сканирующего электронного микроскопа.

Первый способ искусственного получения и выделения твердого кристаллического фуллерена (фуллерита) был предложен в 1990 году Вольфгангом Кречмером (Wolfgang Kratschmer) и Дональдом Хаффманом (Donald Huffman) с коллегами в Институте ядерной физики Гейдельберга (Германия).

Углеродные нанотрубки впервые в 1991 году обнаружил японский исследователь Сумио Ииджима (Sumio Iijima) из Лаборатории фундаментальных исследований компании NEC . В поисках фуллеренов он изучал на полярном ионном микроскопе осадок (сажу), который образуется на катоде, когда при разряде вольтовой дуги в атмосфере гелия распыляется графит. Ученого заинтересовал неприглядный серый «обрубок» диаметром 0,8 нм, вырастающий на катоде. Он оказался странным графитовым наноцилиндриком с угольно-черной сердцевиной (подобной карандашу), или как бы закрытым мини-туннелем, построенным из особых видов сажи. Электронная микроскопия осадка показала наличие протяженных полых объектов диаметром несколько десятков нанометров. Их цилиндрические стенки представляли собой сверхустойчивую структуру из шестигранных колец углерода, закрытых по краям полусферическими крышечками из семи— или восьмигранников. Так были открыты нанотрубки и наноконусы.

Открыватель углеродных нанотрубок Сумио Ииджима

На электронных микрофотографиях (рис. 2), полученных с трансмиссионного электронного микроскопа с высоким разрешением, были обнаружены цилиндрические молекулы с пятью (а), двумя (b) и семью (c) концентрическими стенками.

Первые синтезированные нанотрубки были многослойными, и сразу возникла задача синтеза однослойных углеродных нанотрубок. В результате исследований С. Ииджимой было установлено, что добавление небольшого количества порошка катализатора (кобальта, никеля или железа) в графитовые электроды обеспечивает образование однослойных нанотрубок. Металлическая добавка является катализатором, предотвращающим образование фуллеренов и многослойных нанотрубок. При этом наличие катализатора также обеспечивает снижение температуры синтеза, в результате температура вольтовой дуги не превышает температуры, при которой спекаются нанотрубки.