Экологические последствия расхода такого объема воды сложно достоверно оценить. Аналогии, связанные с ирригацией (Сырдарья и Амударья и бассейн Арала, обмелевшая река Хуанхэ в Китае), заставляют крайне серьезно отнестись к данной проблеме.
Какие основания у нас есть, чтобы считать, что проблема воды для водородной энергетики будет решена иначе, чем это сегодня уже происходит при добыче сланцевого газа? Правильно — никаких!
Но вернемся к основной теме этого раздела. Нанотехнологии позволяют нам концентрировать энергию. Например, становятся возможными высокоэнергоемкие вещества и среды. И это отнюдь не только батарейки, способные служить в десять раз дольше. Накопленная в них энергия — это потенциальный взрыв, способный, в том числе, иметь военное применение. Среди таковых возможностей, предоставляемых нанотехнологиями, — создание так называемой вакуумной бомбы. Такие бомбы больших калибров сравнимы по мощности со сверхмалыми тактическими ядерными боеприпасами. Тротиловый эквивалент мощнейшей на сегодня в мире неядерной бомбы — российской авиационной бомбы объемного взрыва, испытанной 11 сентября 2007 г., — составляет около 44 тонн, а радиус гарантированного поражения — 300 метров. Тем самым площадь поражения больше площади Московского Кремля.
Принципиальным моментом здесь является то, что высокая разрушающая способность сопряжена с относительной технологической простотой, а простота — обратная сторона доступности, в том числе «безответственным» игрокам, таким, например, как террористы.
Ядерное оружие даже малых калибров подпадает под международно признанный режим нераспространения. Ядерные технологии, такие как технологии обогащения, не являются «незаметными», а потому, пусть недостаточно эффективно, контролируемы. Напротив, возможные заряды различной мощности с применением нанотехнологий могут создаваться в обход установленным режимам нераспространения (как незаметные), да и сами режимы международное сообщество еще не установило.
Итак: опасности, связанные с высококонцентрированной энергией, могут представляться нам очевидными. Военный аспект, к сожалению, делает эту тему для нас знакомой. Но предполагать, что все ограничится уже знакомыми нам последствиями, — ошибка. Такая же ошибка, как оценивать последствия случайного взрыва артиллерийского снаряда, без учета того, что этот снаряд может лежать на складе среди множества подобных.
Риск агрессивных сред — наноматериалы разрабатываются для применения в агрессивных средах, таких, для которых применение обычных материалов невозможно.
Риск переноса высоких технологий из лабораторий в массовое производство и обычную среду обитания человека с ее непредсказуемыми воздействиями.
Риск неучета известных факторов ввиду их «привычности» и отсутствия их анализа в «научном обороте».
Риск повышения надежности системы с одновременным ростом тяжести последствий аварии.
Риск переоценки значимости имеющихся ресурсов.
Риск концентрации большой энергии в малых объемах.
Риск доступности высокоэнергетических веществ.
1.5. Светло, да не видно
Главное — не перейти улицу на тот свет.
Последствия применения нанотехнологий, как мы уже говорили, могут носить косвенный характер. Изменения затрагивают не столько сами производственные и технологические процессы, сколько то, что с ними связано. Эти изменения напрямую технологией не диктуются. Скорее, попытки применить такие технологии там, где без такого давления технология не будет востребована, и есть тот источник риска, о котором речь пойдет далее.
Яркий пример таких косвенных последствий — извините за невольный каламбур — последствия государственного лоббирования светодиодного освещения.
Конечно, светодиодное освещение имеет и вполне прямые последствия. Не всякий свет полезен для человека, а тем более для ребенка: можно и зрение испортить. Наиболее энергетически эффективные светодиоды (а именно для этого их и применяют — электроэнергию экономить) как раз тем и отличаются, что их свет не такой, как солнечный. Вот и придумывают для них специальное применение. Это так называемое ландшафтное освещение. Мол, если здание для красоты подсвечивать, то все равно чем, лишь бы ярко. Но «задумки» этим не ограничиваются. Применение такого, да и практически любого светодиодного освещения в школьных и дошкольных учреждениях, поликлиниках и больницах (детских и взрослых), в общественных местах запрещено уже упомянутыми СанПиНами. И правильно запрещено. Попробуйте почитать книгу, освещая страницы светодиодным фонариком. Желание читать пропадет сразу. Ну а где такие светодиоды внедрять? Правильно — там, где их можно установить административно, например в транспорте. Самолет и электричка — вот первые потенциальные жертвы (не читать же вы пришли!), а также детские сады, школы, больницы, поликлиники и библиотеки.
Постойте, скажет читатель. Ведь только что авторы написали — «запрещено СанПиНами»! Все так. Но кто мешает эти нормы пересмотреть? Например, провести исследования и «установить», что и не вредно вовсе.
И такие попытки предпринимались, ведь энергоэффективность — важнейший приоритет государства! Хорошо, что на сегодня эти попытки закончились ничем. Но это только пока.
Знающий читатель справедливо заметит: но ведь есть светодиоды и не такие вредные. Светят себе вполне приятным белым светом. Есть — правда. Но правда и в том, что их трудно отнести к энергоэффективным. Они, по сути, мало чем отличаются от ртутных ламп. Светит такой светодиодик в ультрафиолете, а сверху покрыт люминофором [24]. И ультрафиолетовое излучение полностью поглощается этим люминофором. Затем люминофор переизлучает его. Это явление называют люминесценцией, а лампы такого типа — люминесцентными. Переизлучает же он свет в широком спектре и с большей длиной волны, чем было, — как раз в диапазоне видимого света, от красного до фиолетового. Вот и получается свет беленький, приятный. Но вот что интересно. Энергосберегающие лампы, такие как компактная люминесцентная лампа (КЛЛ), делают это не хуже. Светит такая лампа в ультрафиолете, а люминофор его переизлучает. Зачем же тогда светодиод? Предъявляемый нам, потребителям, ответ таков. КЛЛ переизлучает ультрафиолет за счет содержащейся в люминофоре ртути, а ртуть, известное дело, — опасна. Такие лампы просто так не выкинешь, их собирать и утилизировать надо. А светодиодная лампа… Стоп! А светодиодная лампа как ультрафиолет переизлучает? На этот вопрос принято не отвечать.
Еще на рубеже XIX–XX вв. было установлено, что каждый химический элемент обладает уникальным спектральным портретом. Вот что это означает. Элемент может поглотить или излучить не любой свет, а только свет определенных частот или длин волн. Такие узенькие диапазоны назвали спектральными линиями. Чем хороша ртуть? У нее есть в области ультрафиолета полосы поглощения, достаточные, чтобы эффективно поглотить энергию ультрафиолетового излучения, и есть линии излучения в широком спектре видимого света, достаточные для того, чтобы такой свет считать приемлемым. Если в КЛЛ применяют ртуть, а не какой-либо другой элемент, значит, ртуть наиболее подходит для этих целей. Портрет — в смысле спектральных линий — у нее такой, подходящий. Но светодиод (тот, о котором мы говорим сейчас) работает так же. Позвольте, разве для этого светодиода «изобрели» какую-то отдельную таблицу Менделеева? Если есть такой элемент, имеющий столь же подходящий, как у ртути, портрет спектральных линий, то почему его не применить в КЛЛ?
Конечно, мы многое сильно упростили, утрировали. Но главное понятно: требуется объяснение, почему в одном случае у нас люминофор хороший, а в другом — плохой, ведь делают они одно и то же!
24
Люминофор (от лат.