Выбрать главу

В таком неспешном темпе он продолжался до начала неолита, т. е. примерно до восьми тысяч лет до н. э. (Неолит − это время перехода от охоты и собирательства к оседлому образу жизни; время появления сельского хозяйства, домашних животных, прочных жилищ, семьи, письменности, торговли, технологий, первых крупных поселений…)

В момент начала неолита что-то произошло: никто не знает в чем настоящая причина неолитической революции, но именно в этот момент времени гиперболический рост населения Земли перешел ко второй, взрывной своей стадии. Рано или поздно такой рост должен был прекратиться, смениться «менее крутым», иначе в точке сингулярности численность человечества стала бы бесконечной. Завершение его приходится как раз на то время, в которое мы живем.

Но тут то и происходит самое непонятное и загадочное. На фоне растущего благосостояния человечество вступило в глобальный демографический переход. За ничтожное по историческим меркам время рост населения мира должен полностью прекратиться (как это уже произошло с рядом стран, уже прошедших свой «локальный» переход) и стабилизироваться на некоторой предельной, асимптотической величине. Но почему, пусть замедляющийся, этот рост не может быть продолжен? Удовлетворительного ответа на этот вопрос – нет.

* * *

Важнейшим этапом в развитии теоретической демографии стала феноменологическая теория роста населения Земли С.П. Капицы. От гиперболической зависимости численности от времени был сделан переход к простому дифференциальному уравнению, описывающему зависимость скорости роста от численности:

Рис. 2. Уравнение Капицы. Это же уравнение, но без расщепления С на K и τ, можно найти в книге И.С. Шкловского «Вселенная, жизнь, разум».

С.П. Капица ввел две константы τ и К вместо одной С, в результате чего была получена хорошая аппроксимация зависимости численности населения мира от времени на всех этапах роста, включая демографический переход. Были получены новые результаты, важнейший из которых − принцип демографического императива. Этот принцип, в отличие от ресурсного мальтузианского, утверждает, что рост численности населения Земли на протяжении всей истории человечества зависел только от самой этой численности и не зависел ни от каких ресурсов.

Феномен квадратичной зависимости скорости роста численности населения (ежегодного мирового естественного прироста) от численности С.П. Капица объясняет системностью человечества и информационной природой развития, присущей только человеку. Но человечество долгое время не представляло собой системы, и рост населения в Европе, Америке, Азии… происходил независимо.

Тогда в чем причина этой квадратичной зависимости? – Непонятно. Константы τ и К были введены С.П. Капицей при анализе динамики роста населения Земли за последние 250 лет, включая начало демографического перехода, и смысл их до сих пор остается непонятным. Сам он определил эти постоянные так:

1. Константа τ = 42 года − это время, определяемое внутренней, предельной способностью системы человечества и человека к развитию.

2. Константа К = 67000 – безразмерная величина, которая является центральной в его теории; она задает численность группы людей, которая определяет характер коллективного взаимодействия.

Но какой временной масштаб задает постоянная времени τ? Связана ли она со средней продолжительностью жизни? Почему длительность демографического перехода равна 2τ? А константа К, так близкая к круглому числу 216, в чем ее смысл? Таким образом, теория Капицы, с одной стороны, позволила ответить на ряд важных вопросов, а, с другой стороны, как это часто бывает в науке, породила новые.

Математика

Приведем элементарные математические определения, которые легко поймет и ученик старших классов, но без которых невозможно уяснить суть предлагаемой гипотезы.

Центральное место в теории занимает сеть. Под сетью будем понимать граф, в котором все узлы соединены между собой ненаправленными отрезками: «каждый с каждым». Например, сеть, состоящая из пяти узлов, содержит десять связей.

Рис. 1. Сеть, состоящая из пяти узлов, число связей равно 10.

Гармоническая сеть содержит число узлов, равное двойке в некоторой целой степени – 2n, например: 2,4,8,16… (n = 1,2,3,4…).