Выбрать главу

Рост сети 65536

Продолжая процесс, переходим к сети 65536. Первый этап – рост от 2-х клаттеров до 256-ти.

Рис. 1. Рост сети 65536 от 2-х клаттеров до 256-ти.

Всего сеть проходит 42142 цикла. Из них пустых 42142 – 254 = 41888. В 254 циклах собиралось по одному клаттеру. На второй виток, в соответствии с алгоритмом, заходить не приходилось.

Имеется восемь гармонических стадий роста: на старте и на 23666-м, 33543-м, 38046-м, 40197-м, 41261-м, 41812-м, 42142-м циклах с числом 2, 4, 8, 16, 32, 64, 128 и 256 клаттеров, соответственно.

Второй этап – рост от 256-ти клаттеров до 65536-ти.

Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.

Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:

3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.

Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть. Гиперболическая сеть – это сеть, размер которой равен ce(65536/N), где N > 256 – натуральное число.

Причем при увеличении М на единицу процесс устойчив и через некоторое количество циклов «садится» на гиперболу. При уменьшении М на единицу наблюдается неустойчивость, и процесс роста необратимо уходит от гармонических сетей.

Понадобилась одна коррекция в сторону уменьшения размера сети М: 328 <− 327 (65536/328 = 199.8), если ее не провести процесс срывается с гиперболы (последние три цикла 25501, 43735, 65537). Результаты работы алгоритма «почти точно» ложатся на теоретическую гиперболу сети 65536:

Рис. 3. Теоретическая гипербола сети 65536.

Гиперболический рост сети на первом и втором этапе представляет собой ускоряющийся неустойчивый процесс, требующий от управляющей системы двадцать пять коррекций. Неустойчивость роста понятна и из того факта, что уравнение Капицы, как асимптотический закон роста сети, устойчивых решений не имеет.

Составим таблицу зависимости числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы. Значения почти совпадают: максимальное отличие в три клаттера. В таблице выделены гармонические размеры сети.

Таблица 1. Зависимость числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы.

Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.

Гармонические стадии роста сети 65536

Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:

Таблица 2А. Подсчет номера цикла и числа клаттеров для гармонических сетей с размером, принадлежащем интервалу [257, 65536].

Таблица 2В. Зависимость числа клаттеров от номера цикла для гармонических размеров сети 65536.

Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной

Для того, чтобы найти полное количество циклов, которое проходит сеть любого ранга в процессе своей эволюции, нужно сложить число этих циклов на трех этапах ее роста (считаем, что сеть любого ранга, став совершенной, создает единственную свою копию, на что уходит ровно два цикла[8] и рост сети следующего ранга всегда начинается с двух клаттеров.)

На втором и третьем этапе число циклов вычисляется с полной определенностью: корень квадратный из веса клаттера минус единица плюс два. Минус единица, т. к. алгоритм восьми шагов прекращает свою работу за шаг до сингулярности. И далее два цикла на переход. Получаем корень квадратный из веса клаттера плюс единица.

Наибольший вклад в количество циклов, пройденных сетью за время ее роста, дает первый этап. Причем для сетей, с рангом большим трех, число циклов на втором этапе гораздо меньше, чем на первом и им обычно можно пренебречь. Следовательно, наиболее важным представляется подсчет циклов на первом этапе.

И здесь нас подстерегает неоднозначность. Действительно, в приложении этой математики к процессу роста населения Земли, время эволюции Сети человека на всех этапах ее роста должно исчисляться целым числом циклов. Поскольку на первом этапе копирование происходит звеньями, проблема возникает с последним циклом звена, если вес клаттера не делится нацело на квадрат размера сети. Рассмотрим, например, рост сети четвертого ранга от трех клаттеров до четырех. Для сборки четвертого клаттера потребуется 65536/32 = 7281 и 7/9 цикла. Т. к. 7:3 = 2*3+1, четвертый клаттер будет собран после копирования первой позиции последнего, из стоящих в очередь на копирование, клаттера 7282-го цикла.

вернуться

8

Два цикла характерного времени в приложении этой модели к явлению роста населения Земли, а не две операции самокопирования СИС.