Выбрать главу

Иногда галактики сталкиваются друг с другом. Эти космические дорожно-транспортные происшествия не так страшны, как может показаться, поскольку звёзды, как правило, проходят друг мимо друга. В итоге галактики сливаются, а большинство их звёзд объединяется в новую, более крупную галактику. Как Млечный Путь, так и наша ближайшая крупная соседка, Туманность Андромеды, — пиццеобразные галактики, которые называют спиральными из-за восхитительных рукавов (рис. 2.2). Когда сталкиваются две спиральные галактики, результат сначала кажется беспорядочным, а затем формируется округлая капля из звёзд, называемая эллиптической галактикой. Такая судьба ждёт и нас, поскольку через несколько миллиардов лет нам предстоит столкновение с Туманностью Андромеды. Неизвестно, будут ли наши потомки называть свой дом Млечномедой, но мы твёрдо знаем, что это будет эллиптическая галактика: телескопы позволили увидеть множество подобных столкновений на разных стадиях, и результаты этих наблюдений вполне согласуются с теоретическими предсказаниями.

Если галактики образовались за счёт слияния более мелких галактик, насколько малы были те, первоначальные? Эти поиски были темой первого исследовательского проекта, который меня по-настоящему озадачил. Ключевой частью моих вычислений было определение того, как химические реакции в газе порождают молекулы, способные приводить к снижению давления за счёт излучения тепловой энергии. Но каждый раз, когда мне казалось, что вычисления окончены, я обнаруживал, что применяемые мной формулы молекул содержат серьёзную ошибку, делающую все расчёты неверными и заставляющие начать всё сначала. Через четыре года после того, как научный руководитель Джо Силк впервые предложил мне этим заняться, я был настолько раздосадован, что подумывал заказать футболку с надписью «Я ненавижу молекулы» и изображением молекулы водорода, моего главного врага, перечёркнутой толстой красной линией, как на знаке «Курение запрещено». Но затем удача мне улыбнулась: перебравшись в Мюнхен на позицию постдока, я встретил студента по имени Том Абель, который только что завершил поистине энциклопедические расчёты всех молекулярных формул, которые мне требовались. Он присоединился к нашей команде в качестве соавтора, и 24 часа спустя дело было сделано. Мы предсказывали, что масса самых первых галактик составляла «всего» около 1 млн масс Солнца. Нам повезло: этот результат в основном согласуется с гораздо более сложными компьютерными моделями, которыми профессор Том занимается сейчас в Стэнфорде.

Возможно, наша Вселенная расширяется

Самое грандиозное шоу на Земле, в рамках которого поколения живых организмов рождаются, взаимодействуют и умирают, началось около 4,5 млрд лет назад. Кроме того, мы открыли, что это часть ещё более грандиозного спектакля, в котором поколения галактик рождаются, взаимодействуют и умирают в космической «экосистеме». Так вот, не может ли быть в этой постановке третьего уровня, на котором могут рождаться и умирать целые вселенные? В частности, нет ли признаков того, что наша Вселенная имела начало во времени? Если да, как и когда это произошло?

Почему галактики не падают? С ответа на этот вопрос начинается наш следующий рывок, отодвигающий предел знания ещё дальше в прошлое. Мы видели, что Луна не падает на Землю, потому что обращается вокруг неё с высокой скоростью. Вселенная во всех направлениях населена галактиками, и очевидно, что для них это объяснение не подходит. Не все они обращаются вокруг нас. И если Вселенная вечна и в целом статична (то есть далёкие галактики не движутся быстро), почему же они не упадут на нас, как случилось бы с Луной, если бы она вдруг остановилась?

Конечно, во времена Ньютона никто не знал о галактиках. Но если, подобно Джордано Бруно, представить себе бесконечную статическую Вселенную, однородно заполненную звёздами, то должно иметься хотя бы примерное объяснение, позволяющее не волноваться, что они на нас упадут. Законы Ньютона утверждают, что к каждой звезде приложена большая (в действительности бесконечная) сила гравитации, действующая в равной мере во всех направлениях, и можно заключить, что эти противоположно направленные силы погасят друг друга, оставив все звёзды в неподвижности.

В 1915 году это объяснение было опровергнуто новой теорией гравитации — общей теорией относительности.[7] Её автор Альберт Эйнштейн понимал, что статическая бесконечная Вселенная, однородно заполненная материей, не укладывается в новые уравнения гравитации. И как же он поступил? Он, безусловно, усвоил главный урок Ньютона: надо смело экстраполировать свои уравнения и представить, какого рода Вселенная будет им удовлетворять, а затем выяснить, какие наблюдения позволяют проверить, действительно ли мы живём в такой Вселенной. По иронии судьбы, даже Эйнштейн, один из самых изобретательных учёных всех времён, чей принцип состоял в том, чтобы подвергать сомнению самые несомненные допущения и авторитеты, не решился усомниться в собственном авторитете и собственной уверенности в том, что мы живём в вечной, неизменной Вселенной. Вместо этого он совершил, как впоследствии сам признавался, свою величайшую ошибку: изменил уравнения, добавив дополнительный член, позволяющий Вселенной быть статической и вечной. Двойная ирония состоит в том, что сегодня этот дополнительный член, похоже, вновь появился в уравнениях в форме космической тёмной энергии, которую мы ещё обсудим, но на этот раз он имеет иной смысл и не делает нашу Вселенную статической.

вернуться

7

Бесконечное однородное распределение звёзд в пространстве является неустойчивым и в классической теории гравитации. Это, по-видимому, понимал ещё Ньютон, а детально исследовал американский астроном Джеймс Джинс в 1902 году. — Прим. пер.